 $= \pm=m=2= \pm=m$ momennmen
$=4=4=m$
 mann
$= \pm= \pm= \pm=5=5=$

45 cimen

pesem sulued to thator Ile: (NBiT3.5)

 Tesiseof Statani

Mavaxawava
vavexamexam $\pm=\mathrm{V}=\mathrm{V}=$
 $\cdots \times$
 $5=\square=4$

 mismem
 1
masmanmen $\max =\mathrm{max}=\mathrm{m}$

Zoom In $\times 14 \quad \oplus$
Home

* Number of superclusters in the visible universe $=10$ million
* Number of galaxy groups in the visible universe $=25$ billion
* Number of large galaxies in the visible universe $=350$ billion
* Number of of stars in the visible universe $=30$ billion trillion

Data and Catalogs

	The Big Bang and the Expansion of the Universe This page is a brief explanation of the Big Bang and it explains how the universe is expanding and why there is no centre or edge of the expanding universe.
$\bigcirc \cdots$	The Distance Scale of the Universe What exactly is the distance to the edge of the visible universe? How do you define

The Size of the Universe
The visible universe appears to have a radius of 14 billion light years because the universe is about 14 billion years old. The light from more distant objects simply has not had time to reach us. For this reason everybody in the universe will find themselves at the middle of their own visible universe. The precise scale of the universe is complicated by the fact that the universe is expanding. G Ga

The true size of the universe is probably much larger than the visible universe. The geometry of the universe suggests that it may have an infinite size and that it will expand forever. Even if the universe is not infinite, our visible universe must be a minute speck in a much larger totality

By collecting distances to thousands of galaxies in a narrow strip of the sky, it is possible to produce a 'slice' of the universe, like this one shown
below from the $2 d \mathrm{~F}$ Galaxy Redshifit Suver which looks out into the universe to 3.5 billon light years, although not much data was collected for galaxies beyond 3 billion light years. These types of plots show how clustered the galaxies in the universe really are, even on the largest scales,
About 52000 galaxies are plotted.

A spiral galaxy, type Sbc, centered in Sagittarius

The Milky Way is the galaxy which is the home of our Solar System together with at least 200 billion other stars (more recent estimates have given numbers around 400 billion) and their planets, and thousands of clusters and nebulae, including at least almost all objects of Messier's catalog which are not galaxies on their own (one might consider two globular clusters as possible exceptions, as probably they are just being, or have recently been, incorporated or imported into our Galaxy from dwarf galaxies which are currently in close encounters with the Milky Way: M5 from SagDEG, and possibly M79 from the Canis Major Dwarf). See our Messier Objects in the Milky Way page, where details are given for each object to which part of our Galaxy it is related. All the objects in the Milky Way Galaxy orbit their common center of mass, called the Galactic Center (see below)
As a galaxy, the Milky Way is actually a giant, as its mass is probably between 750 billion and one trillion solar masses, and its diameter is about 100,000 light years. Radio astronomial investigations of the distribution of hydrogen clouds have revealed that the Milky Way is a spir exhibiting a spiral structure, and a prominent nuclear reagion which is part of a notable bulge/h component. It is still not clear if it has a bar structure (so that it would be type SB) or not, but an component. It is still not clear if it has a bar structure (so that it would be type SB) or not, but an look like M61 or M83, and is perhaps best classified as SABbc.

- More on the structure of the Milky Way

The Milky Way Galaxy belongs to the Local Group, a smaller group of 3 large and over 30 small galaxies, and is the second largest (after the Andromeda Galaxy M31) but perhaps the most massive member of this group. M31, at about 2.9 million light years, is the nearest large galaxy, but a number of faint galaxies are much closer: Many of the dwarf Local Group members are satellites or companions of the Milky Way. The two closest neighbors, both already mentioned, have only recently been discovered: The nearest of all, discovered in 2003, is an already almost disrupted dwarf galaxy, the Canis Major Dwarf, the nucleus of which is about 25,000 light-years away from us and about 45,000 light-years from the Galactic Center. Second comes SagDEG at about 88,000 light years from us and some 50,000 light years from the Galactic Center. These two dwarfs are currently in close encounters with our Galaxy and in sections of their orbits situated well within the volume ocupied by our Milky Way. They are followed in distance by the more conspicuous Large and Small Magellanic Cloud, at 179,000 and 210,000 light years, respectively.

The spiral arms of our Milky Way contain interstellar matter, diffuse nebulae, and young stars and open star clusters emerging from this matter. On the other hand, the bulge component consists of old stars and contains the globular star clusters; our galaxy has probably about 200 globulars, of which we know about 150 . These globular clusters are strongly concentrated toward the Galactic Center: From their apparent distribution in the sky, Harlow Shapley has concluded that this center of the Milky Way lies at a considerable distance (which he overestimated by factors) in the direction of Sagittarius and not rather close to us, as had been thought previously
Our solar system is thus situated within the outer regions of this galaxy, well within the disk and only about 20 light years above the equatorial symmetry plane but about 28,000 light years from the Galactic Center. Therefore, the Milky Way shows up as luminous band spanning all around the sky along this symmetry plane, which is also Ophiuchus. The distance of 28,000 light years has recently (1997) been confirmed by the dat of ESA's astrometric satellite Hipparcos. Other investigations published - 2000
 based on RR Lyrae variables) yields roughly 26,000 light years. These data if of significance, wouldn't immediately effect values for distances of particular objects in the Milky Way or beyond
the solar system is the Sagittarius Arm and the Perseus Arm; see our Milky Way Spiral Structure page.

Similar to other galaxies, there occur supernovae in the Milky Way at irregular intervals of time. If they are not too heavily obscurred by interstellar matter, they can be and have been seen as spectacular events from Earth. Unfortunately, none has yet appeared since the invention of the telescope (the last well observed supernova was studied by Johannes Kepler in 1604).

Milky Way pictures are wide-field exposures. Besides being attractive and often colorful, they are often suited to view the Milky Way objects (including nebulae and star clusters) in their celestial surroundings of field stars. Some fields include lots of Messier objects and thus included here:

- Milky Way central region including constellations Sagittarius, Scorpius, Ophiuchus and Scutum, and map of the Milky Way Central Region, by Bill Keel of the University of Alabama
- Milky Way in Sagittarius, including portions of Scorpius and Ophiuchus
- Milky Way around M17, M18, and M24

Our image was obtained by David Malin of the Anglo-Australian Observatory, and shows the many Messier objects around the direction of the Galactic Center. It is Our image was obtained by David Malin of the Anglo-Australian Observatory, and shows the many Messier objects around the direction of the Galactic Center. copyrighted and may be used for private purpose only. For any other kind of use, including in
Permissions Department (photo at aaoepp.aao gov.au) of the Anglo Australian Observatory.
Permissions Department (photo at aaoepp.aao.gov.a.

- More information on this image by David Malin
- More information on the AAT image

In order to obtain a picture of the whole Milky Way as it appears from Earth, one must either compose a mosaic of many photographs (optionally computer-processed), or create a drawing; fine examples may be accessed below:

- A good Milky Way photo mosaic

- Knut Lundmark's drawing of the Milky Way

In the infrared light, the structure of the Milky Way can be better visible light. The Cobe satellite has provided an infrared image of the Milky Way's central region.

Sagittarius A*.
Below we give some data for the Galactic Center (this and all following positions for epoch 2000.0):

Right ascension	$17: 45.6(\mathrm{~h}: \mathrm{m})$
Declination	$-28: 56(\mathrm{deg}: \mathrm{m})$
Distance	$28(\mathrm{kly})$

The Galactic North Pole is at

Right ascension	$12: 51.4(\mathrm{~h}: \mathrm{m})$
Declination	$+27: 07(\operatorname{deg}: \mathrm{m})$

The coordinate data given here were extracted from the online coordinate calculator at Nasa/IPAC's Extragalactical Database (NED) (also available by telnet).
Our Sun, together with the whole Solar System, is orbiting the Galactic Center at the distance given, on a nearly circular orbit. We are moving at about $250 \mathrm{~km} / \mathrm{sec}$, and Our Sun, together with the whole Solar System, is orbiting the Galactic Center at the distance given, on a nearly circular orbit. We are moving at about $250 \mathrm{~km} / \mathrm{sec}$, and
need about 220 million years to complete one orbit (so the Solar System has orbited the Galactic Center about 20 to 21 times since its formation about 4.6 billion years ago).
In addition to the overall Galactic Rotation, the solar system is moving between the neighboring stars (peculiar motion) at a velocity of about $20 \mathrm{~km} / \mathrm{s}$, to a direction called "Solar Apex," at the approximate position $\mathrm{RA}=18: 01$, $\operatorname{Dec}=+26$ (2000.0); this motion has been discovered by William Herschel in 1783 .

Considering the sense of rotation, the Galaxy, at the Sun's position, is rotating toward the direction of Right Ascension 21:12.0, Declination $+48: 19$. This shows that it rotates "backward" in the Galactic coordinate system, i.e. the Galactic North Pole is actually a physical South Pole with respect to galactic rotation (defined by the direction of the angular momentum vector)

- More info on the Milky Way Spiral Structure
- Messier Objects in the Milky Way page

More links to Milky Way materials

- Milky Way Galaxy images from the Astronomical Picture of the Day archives
- Milky Way Wide-Angle Photos
- Multi Wavelength Images of the Milky Way (Nasa ADC)
- Milky Way page of the MAP space observatory project
- The Summer Milky Way from S.E. Arizona
- Milky Way panorama by Axel Mellinger
- The Milky Way Galaxy within 50,000 light years, A Map of the Milky Way, and The Milky Way's Satellite Galaxies, from An Atlas of the Universe
- The Structure of the Milky Way Tutorial, Gene Smith
- Yahoo's index of Milky Way webpages

References:

- D.H. McNamara, J.B. Madsen, J. Barnes, and F.B. Ericksen, 2000. The Distance to the Galactic Center. PASP $1 \underline{\mathbf{1 1 2}}$ p. 202 (Feb. 2000

General References and Further Reading:

- The Milky Way, by Bart J. and Priscilla F. Bok. 5th edition. Harvard University Press, 1981.

The Alchemy of the Heavens, by Ken Croswell. Anchor Books, New York, 1995.

Galaxies

Links; $>$ References; \gg Galaxy Clusters
ticon shows M51, the Whirlpool Galaxy.

Galaxies are large systems of stars and interstellar matter, typically containings several million to somet trillion stars of masses between several million and several trillion
imes that of our Sun, of an extension of a few thousands to several $100,000 \mathrm{~s}$ lighty years, typically seprated by millions of light years sistance. They come in a variety of imes that of our Sun, of an extension of a few thousands to several 100,000 ligh years, typiacaly separated by millions of light years
flavors: ppiral, enticular, elliptical and iregular. Besides simple stars, they typically contain various types of star clusters and nebulae.

We live in a giant spiral galaxy, the Milky Way Galaxy, of 100,000 light years diameter and a mass of roughly a trillion solar masses. The nearest dwarf galaxies, stellites distant.

© Spiral

Spiral galaxies usually consist of two major components: A flat, large disk which often contains a lot of interstelar mater (visible sometimes as reddish blueish light of their hoteststshor-tiving, most massive stars), often arranged in conspicuous and striking spiral patterns and/or bar structures, and an ellipssidally formed
bulge component, consisting of an old stellarar population without interstellar mater, and often associaited with globular clusters. The young stars in the disk are classified a

Our sun is one of several 100 billion stars in a spirial galaxy, the Milky Way

Lenticular (SO)

These are, in short, "spiral galaxies without spiral structure", i.e. smooth disk galaxies, where stellar formation has stopped long ago, because the . interstellar mater was used up. Therefore, they consist

Elliptical

Ellipicial galaxies are actually of ellipsoidal shape, and it is now quite sate from observation that they are usually triaxial (cosmic footballs, as Paul
Murdin, David Allen, and D David Malin put it. They have ititle or no gobobal angular momentum, i.e. do not roate as a whole (of course, the stars still orbit he centers of these egalaxies, but the orbits are statisticially oriented so that only lititl net orbitita angular momentum sums rup). Normally ellipitical
ititl or no intersellar mater, and consist of of population II stars only: They appear like luminous bulges of spirals, without a disk component.
However, for some e elipiticals, small disk components have been discovered, so that they may be representatives of one end of a common scheme of galaxy forms which
includes the disk galaxies.

rregular

Often duxu to distorion by the gravitation of their intergalactic neieghbors, these galaxies do not fit well into the scheme of disks and ellipsoids, but

Huble Scheme with Messier galaxies for HTML browser supporting tables (e.g., Netscape, IBM Webexplorer)

- Hubble Scheme for HTML browsers not supporting tables (Lyynx, Mosaic)

Galaxies of all types, though of a wide variety of shapes and appearances, have many basic common features. They are huse agglomeration
several millions to several trillions. Most of the stars are not lonely in space like our Sun, but occur in pairs (binaries or multiple systems.
The most massive galaxies are giants which are a million times more massive than the lightest. Their mass range is from at most some million times that of our Sun in case
of the smallest dwarts, to several trillion solar masses in case of giant like M87 or M77. Accordingly, he number of stars in them varies in the same range. The linear size of galaxies also scatters, ranging from small dwarf of few thousands of light years diameter (like M32) to respectable several 100,000 light years. Among
the biggest Messie galaxies are the Andromeda galaxy M31 and the brigh active Seyfert I I galaxy M77. the bigest Messie galaxies are the Andromeda galaxy M31 and the brigh active Seyfert II galaxy M77.
Our Milky Way Galaxv, aspiral galaxy, is among the massive and big galaxies with at least 250 b
large as 750 billion to 1 trillion times that of the Sun) and a disk diameter of 10,000 light years.
Besides very many individual stars, most galaxies contain the following typical objects:
$\frac{\text { Globular star clusters. } \text {, large but quite compact agglomerations of some } 100,000 \text { to several million stars. These large clusters have about the same mass as the }}{\text { smallest galaxies, and are among the oldest tobjects in galaxies. Often, hey form conspicuous systems, and occur at ataxies of every type and size. The globular }}$ cluster systems vary in a wide range in richness between the individual galaxies.
As the stars develop, many of them leave nebulous remnants (planetary nebulae or supernova remnants) which then popplate the galaxies,
Whie the older stars, including the globular clusters, tend to form an ellipsoidal bulge, he ine inerstellar gas and dust tends to accumulae
While the older stars, including the globular clusters, tend to form an ellipsoidal bulge, the interstellar gas and dust tends to accumulate in clouds near an equatoria)
disk, which
 are formed.
A rater dense
A rather dense galactic nucleus, which is somewhat similar to a "superlarge" globular cluster. In many cases, galactic nuclei contain supermassive dark objects,
which are offen considered as Black Hole candidates.
 Imerstelar
spectrum.

 Occasionally, at irregular intervals given by chance, in any yppe of galaxies, a supernova occurs: This is a star suddenly brightining to a high luminosity which may well
outshine the whole galaxy: tre maximal absolute magnitude of a superinva may well reach -19 to -20 magnituds. This remarkable phenomenon has atracted the attention outshine the whole galaxy; the maximal absolute magnitude of asupernova may well reach -19 to 02 magnitudes. This remarkable phenomenon has atrracted the attention
of many astronomers cequally both professionals and amateurs), who observe galaxies regularly as they
"hunt" supernovae. Supernovae have been observed in several of many astronomers equult
Messier catalog galaxies.

Acorrding to our currents scientific understanding, at least most galaxies (including our Milky Way and those in Messier's catalog have formed during a comparativel
short period, at about the same time, within the first billion years after the universe started to expand, from an initial hot state. Thus the are all almost as old as she
 helium), the proto-galaxies, were singled out and started to collapse by their own gravity. According to computer simulations, the variety of galaxy forms results fro
different initial parameters of the proto-galaxies such as the amount of (initial angular momentum, as well as their late evolution in their environments, such as differenti intial parameters of the proto-galax.
interaction with other neighboring galaxies.

Links

$\xrightarrow{\text { Radial velocities of the Messier galaxies }}$
Nasa's Extragalacticical Dastabsere (NED) (as
O NED data of the Messier galaxies

- Galaxy Informations from the University of Alabama

Galaxies and the Universe - WWW Course Notes by Bill K K
Galaxies text (by Nick Strobel; scholar series at the MAA)
$\frac{\text { Calaxies text (by Nick }}{\text { Galaxy Catalogs List }}$
Arp's Catalog of Peculiar Galaxies; this catalos includes some of Messier's galaxies (see also the Arp Galaxies in Other Cataloss page of the Online Arp Catalog)

$\frac{\text { ARVAL Catalog of Bright Galaxies }}{\text { GIobular cluster resyen }}$

- Globular cluster systems in other galaxies: Catalog by W. E. Harris (we hold a possilly older copy); Globular Clusters in Other Galaxies (M. Kissler-Patig - From An Atlas of the Universe:
$\frac{\text { Galaxies and GGorops of Galaxies within } 20 \text { million light }}{\text { The Virro Supercluster wiblin } 100 \text { mill }}$
The Virgo Supercluster within 100 million Light Years
The Universe within 200 million Light Years
Look at Galaxies in Messier' Catalos
- Also look at our collection of some signiticant non-Messier galaxies

References

magery and atasses:
Allan Sandage. The Hubble Atlas of Galacies. Carnegie Institution of Washington, 1961.1 .155 superb black \& white photographs of galaxies of all types, obtained
by the Mt. Palomar and Mt. Wilson Observatry telescopes, with captions and datat, and a tecchical and scientific introducion. James D. Wray. The Color Atlas of Galaxiess. Cambridge University Press, 1988.3 -color (UBV) images of 616 galaxies (including all Messier galaxies but M89) taken with telescopes at the McDonald Observatory, Texas, and the Cerro Tololo Interamerican Observatory Chile with data a and cantions
of galaxies and some eother. Sierract Club Books, san Francisco, 1980 . Superb book (look to get the more expensive full-sizize edition) with color and b / w photographs
Of course, fine galaxy photos can be found in many more general astronomy books also.
Special observing Guides:
Kenneth Glyn Jones (editor). Webb Societry Deep-Sky Observer's Handbook, Volume 4, Galaxies, 1981; Volume 6, Anonymous Galaxies, 1987. Enslow
Publishers, Hillside, NJ.
Kenneth Glyn Jones
Publishers, Hillside, NJ.
Most general Deep Sky Observing Guides are good as well.
Textbooks:

In-depth treatment of the physics of galaxies. Some mathen
Paul W. Hodge. Galaxiess. Harvard University Press, 1986 .
storical Reviev
Richara Berendzen, Richard Hart, and Daniel Seeley. Man Discovers the Galaxies. Science History Publications, Neale Watton Academic Publications, New
York 1976. Yours.

Sagittarius

- Download map

Messier Objects in Sagittarius: M8, M17, M18, M20, M21, M22, M23, M24, M25, M28, M54, M55, M69, M70, M75

- Constellation index
- More on constellation Sagittarius [MAA Original]
- More on Sagittarius (Chris Dolan)
- Digital images - Constellation Sagittarius page (T. Credner/S. Kohle) [unframed version] - M75 in Capricornus page

Star Clusters

Click the icon to view Star Clusters of the Messier Catalog
\gg Links \gg

Globular

Globular clusters are gravitationally bound concentrations of approximately ten thousand to one million stars. They populate the halo or bulge of the Milky $\underline{\text { Way }}$ and other galaxies with a significant concentration toward the Galactic Center. Spectroscopic study of globular clusters shows that they are much lower in heavy element abundance than stars such as the Sun that form in the disks of galaxies. Thus, globular clusters are believed to be very old and formed from an earlier generation of stars (Population II). More recent estimates yield an age of 12 to 20 billion years; the best value for observation is perhaps 14 to 16 billion (see e.g. the discussion at M92). As their age is crucial as a lower limit for the age of our universe, it was subject to vivid and continuous discussion since decades. The age of globular clusters is determined by investigating their H-R diagrams, as discussed in our globular cluster page.

The disk stars, by contrast, have evolved through many cycles of starbirth and supernovae, which enrich the heavy element concentration in star-forming clouds and may also trigger their collapse.

Our galaxy has about 200 globular clusters, most in highly eccentric orbits that take them far outside the Milky Way. Most other galaxies have globular cluster systems as well, in some cases (e.g., for M87) containing several thousands of globulars!

Open

Open (or galactic) clusters are physically related groups of stars held together by mutual gravitational attraction. They are believed to originate from large cosmic gas/dust clouds in the Milky Way, and to continue to orbit the galaxy through the disk. In many clouds visible as diffuse nebulae star formation takes still place at this moment, so that we can observe the formation of new young open star clusters (composed of young Population I stars). Open clusters populate about the same regions of the Milky Way and other galaxies as diffuse nebulae, notably spiral arms in disk galaxies, and irregular galaxies, and are thus found along the band of the Milky Way in the sky.

Most open clusters have only a short life as stellar swarms. As they drift along their orbits, some of their members escape the cluster, due to velocity changes in mutual closer encounters, tidal forces in the galactic gravitational field, and encounters with field stars and interstellar clouds crossing their way. An average open cluster has spread most of its member stars along its path after several 100 million years; only few of them have an age counted by billions of years. The escaped individual stars continue to orbit the Galaxy on their own as field stars: All field stars in our and the external galaxies are thought to have their origin in clusters.

Binary and Multiple Star Systems

Star formation leads to the formation of multiple star systems at least as often as it does single star systems, such as our own Solar System. In fact, if the mass of the planet Jupiter were a few times larger, it would become a star.

One should keep in mind that almost all Messier clusters are members of our Milky Way Galaxy (the only probable exception is globular cluster M54 which apparently belongs to the Sagittarius Dwarf Elliptical Galaxy, a closely neighbored dwarf spheroidal galaxy which was discovered in 1994). Other galaxies contain clusters of any type, too, which can be detected with sufficiently sensitive instruments.

Links

- Look at Clusters in Messier's Catalog
- Also look at our collection of some significant non-Messier clusters

Nebulae

Click the icon to view Nebulae of the Messier Catalog
The icon shows the Horsehead Nebula (Barnard 33), a dark nebula superimposed on an emission nebula (IC 434).

C

Diffuse Nebulae

Diffuse nebulae are clouds of interstellar matter, namely thin but widespread agglomerations of gas and dust. If they are large and massive enough they are frequently places of star formation, thus generating big associations or clusters of stars. Some of the young stars are often very massive and so hot that their high energy radiation can excite the gas of the nebula (mostly hydrogene) to shine; such nebula is called emission nebula. If the stars are not hot enough, their light is reflected by the dust and can be seen as white or bluish reflection nebula. As most diffuse emission nebulae also contain dust, they typically have a reflectin nebula component also.

Planetary Nebulae

When a star like our sun has used up all its central nuclear fuel, it finally ejects a significant portion of its mass in a gaseous shell which is then visible in the light emitted due to high-energy excitation by its extremely hot central star, which previously was the core of the stellar progenitor (thus, planetary nebulae are a special kind of emission nebulae). These nebulae quickly expand and fade while their matter is spread in the interstellar surroundings.

Supernova Remnants

Stars which are considerably more massive than our Sun, and have at least about 3 solar masses left after their giant state, can most probably not evolve quitely into an end state as a white dwarf, but when coming to age, explode in a most violent detonation which flashes up at a luminosity of up to 10 billion times that of the sun, called supernova (of type II) and ejecting the very greatest part of the stellar matter in a violently expanding shell. Alternatively, infalling matter on a white dwarf star can cause it to explode as a supernova of type I. The nebulous ejecta of supernovae of either type are called supernova remnants.

The only supernova remnant in Messier's catalog is the first object, the Crab Nebula M1, the remnant of a type II supernova.

Dark Nebulae

Although none of them is in Messier's catalog, some of these objects are conspicuous. Unlike the others, the bright nebulae, these dust clouds are only visible by the absorption of light from objects behind them. They are distinguished from diffuse nebula mainly because they happen to be not illuminated by embedded or nearby stars.

The term "Nebula" has varied in the history of astronomy. In pre-telescopic times it was used to distinguish objects which look non-stellar from the pointlike stars. Most "nebulae" known at that time have been shown to be open star clusters. The term "Nebula" was thus used for what we now call "Deepsky Object".

In early telescopic times, the nature of these objects was still widely unknown. With open clusters resolved, still all other deepsky objects were summarized as "Nebulae". Only the use of large telescopes, the discovery of spectroscopy and the invention of photography in the second half of the 19th century made it possible to distinguish "real" nebulae - i.e., gas and dust clouds - with certainty from objects made up of stars (globular clusters and galaxies).

Now that the nature of nebulae as interstellar masses of gas and dust is known, there are still several classification schemes. The first is based on spectroscopy and the light which is seen from the nebulae:

- Emission Nebulae: Emit light because the atoms in their gases are excited by high energy radiation of stars involved.
- Reflection Nebulae: Reflect light of nearby stars by their dust particles.
- Absorption Nebulae or Dark Nebulae: Absorb light: Their gas component can be seen as absorption spectra in the light of background stars, their dust component by absorbing and reddening background light.

This scheme tells nothing on the nature of the nebulae.

A more modern scheme distinguishes star-forming or pre-stellar nebulae (basically diffuse and dark nebulae) from post-stellar nebulae (basically planetary nebulae and supernova remnants). The first of these classes typically includes clouds of interstellar matter of a mass of several 100 or several 1,000 stars, while the latter is related to one specific star in advanced state of evolution, at or just beyond the end of its nuclear life.

There are a number of variations and special classes of nebulae such as the Herbig-Haro Nebulae (related to stars in the process of formation, and emit jets of gaseous material, thus often found near large diffuse nebulae with star formation) and Wolf-Rayet Nebulae (related to hot Wolf-Rayet stars, stars of some age that have ejected matter they now cause to shine).

On cosmic timescales, all these types of nebulae, in particular the bright nebulae, undergo rapid changes and have only comparatively short lifetimes, so that those we observe are all rather young objects. Planetary nebulae and supernova remnants usually have only a few thousands of years before they fade and spread their matter into the this interstellar matter of their environment, while star forming H II regions while shine bright for the few 100,000 or million years they are brightened by the very hot massive O stars that formed within them. The giant molecular clouds have a somewhat longer life of some 10 s of millions of years, while they form new stars and star clusters.

One should keep in mind that all Messier nebulae are members of our Milky Way Galaxy (together with many others). Other galaxies contain nebulae, too, which can be detected with considerably sensitive instruments within the images of these galaxies.

Links

- Nebulae and Star Clusters within 10000 light years map from An Atlas of The Universe - also note their Map of the Orion Arm within 2000 light years for nearby nebulae
- Look at Nebulae in Messier's Catalog
- View some significant non-Messier nebulae
- Bill Arnett's Web Nebula collection

References

- Webb Society Deep-Sky Observer's Handbook Vol. 2: Planetary and Gaseous Nebulae, by Kenneth Glyn Jones (ed.). Enslow Publishers 1978/1979.
- James B. Kaler, Cosmic Clouds, Scientific American Library, W.H. Freeman, 1997 (German edition: Kosmische Wolken, 1998)

The Sagittarius Dwarf Elliptical Galaxy, SagDEG

Dwarf Elliptical Galaxy SagDEG (also Sagittarius dSph) in $\underline{\text { Sagittarius }}$

Right Ascension	$18: 55.1(\mathrm{~h} \mathrm{:} \mathrm{~m})$
Declination	$-30: 29(\mathrm{deg}: \mathrm{m})$
Distance	$88.0(\mathrm{kly})$
Apparent Dimension	190×490 (arc min)

In 1994, R. Ibata, M. Irwin, and G. Gilmore found this small Local Group galaxy by stellar brightness density investigations (see also e.g. the August 1994 issues of Astronomy or Sky \& Telescope or the German Sterne und Weltraum). This galaxy was immediately recognized as being the nearest known neighbor to our Milky Way, significantly closer than the Large Magellanic Cloud which was considered to be our closest companion until than. It held the title of our nearest intergalactic neighbor for nine years, but lost it in November 2003 to the then newly discovered Canis Major Dwarf.

This dwarf galaxy is called SagDEG (for Sagittarius Dwarf Elliptical Galaxy), or sometimes Sagittarius Dwarf Spheroidal Galaxy; don't confuse it with another member, $\underline{\operatorname{Sag} \underline{\underline{I}} \underline{\underline{G}} \text { (Sagittarius Dwarf Irregular Galaxy). It is strongly recommended to avoid misleading designations such as }}$ "Sagittarius Dwarf" (which is an older designation for SagDIG), "Sagittarius I Dwarf", or similar ambiguous names for this galaxy, although they occasionally occur in websites, databases, articles and papers.

These are two minor galaxies in the same constellation Sagittarius, which are of different type: The difference between these types is that dwarf irregulars still have interstellar matter and/or young stars while the dwarf elliptical have only an old yellowish stellar population. From its stellar contents, it is resembling other low surface brightness members of the local group such as the Sculptor dwarf galaxy, but it is so highly obscured that it was hidden up to the 1994 investigation.

SagDEG is one of the most recently discovered members of the Local Group, and is currently in a very close encounter to our Milky Way galaxy. It is apparently in process of being disrupted by tidal gravitational forces of its big massive neighbor in this encounter. Nevertheless it is apparently big: 5x10 degrees in the sky.

Globular cluster M54 coincides with one of the galaxy's two bright knots, and is also receding at about the same velocity. It may also be at the same distance (about 88,000 light years), so probably M54 is the first "extragalactic" globular ever discovered (by Charles Messier in 1778), or a recent immigrant to the globular cluster system of our Milky Way galaxy. When SagDEG will be disrupted after the current encounter, M54 and the other at least three globulars of this dwarf (Arp 2, Terzan 7 and Terzan 8, which are all much fainter than M54) will be the "remnants", while the other stars will be spread over the galactic halo, or escape as intergalactic travelers. The globulars will perhaps be captured and find their place in the halo of the Milky Way galaxy. There is already one Milky Way globular cluster which is suspected to have been captured from SagDEG: Palomar 12.

In February 1998, a team of astronomers headed by Rosemary Wyse of John Hopkins University found that SagDEG orbits the Milky Way Galaxy in less than one billion years. Because it must have passed the dense central region of our Galaxy at least about ten times, it is surprising that the dwarf has not been disrupted for so far. Astronomers suspect that this fact is an indication for significant amounts of dark matter within this small galaxy, which ties the stars stronger to the galaxy by its gravity. We have their press release here, or you can read their original report online.

References:

- R. A. Ibata, G. Gilmore, and M. J. Irwin, 1994. A Dwarf Satellite Galaxy in Sagittarius. Nature, Vol. 370, No. 6486 (July 21, 1994)
- SIMBAD data for SagDEG
- NED data for SagDEG

[^0]

M 79

Globular Cluster $M 79$ (NGC 1904), class V, in Lepus

Right Ascension	$05: 24.5$ (h:m)
Declination	-24:33 (deg:m)
Distance	42.1 (kly)
Visual Brightness	7.7 (mag)
Apparent Dimension	9.6 (arc min)
Discovered 1780 by Pierre Méchain.	

Globular cluster M79 was found by Pierre Méchain on October 26, 1780, and reported his discovery to his friend and colleague, Charles Messier, who determined its position and included it in his catalog on December 17, 1780. It was first resolved into stars and recognized as a globular cluster by William Herschel in about 1784.

M79 is a beautiful globular cluster at a quite unusual location in the sky: Most globulars are grouped around the Galactic center, but this is one of the few which are situated in the other hemisphere, i.e. it is beyond us for hypothetical observers in the central stellar bulge of our Milky Way galaxy. It is little over 40,000 light years from us, but about 60,000 light years from the galactic center.

At this distance, M79's apparent diameter of 9.6 minutes of arc corresponds to a linear extension of about 118 light years. This cluster is slightly elliptical, extended at position angle 45 deg , and has only 7 known variables. It is receding from us at about $200 \mathrm{~km} / \mathrm{sec}$.

In 2003, it was found that M79 is perhaps a rather new immigrant into the globular cluster system ot our Milky Way: It may come from, or still be a member, of the remnant globular cluster system of the Canis Major Dwarf galaxy, which is currently undergoing a very close encounter with our Galaxy, and in progressive state of dissolution. Together with M79, three more globular clusters are suspected to have immigrated from the Canis Major Dwarf: NGC 1851, NGC 2298, and NGC 2808.

About 0.5 degrees to the SW of M79 lies the 5.5 mag star ADS 3954 with its 7 th mag companion, separated by 3 ".

- Historical Observations and Descriptions of M79
- UIT images of M79 (visible and UV) from the Astro-1 Space Shuttle mission (STS-35)
- More images of M79
- Amateur images of M79
- Multispectral Image Collection of M79, SIRTF Multiwavelength Messier Museum
- Marco Castellani's data for M 79
- SIMBAD Data of M79
- NED Data of M79
- Publications on M79 (NASA ADS)
- Observing Reports for M79 (IAAC Netastrocatalog)

Hartmut Frommert

Christine Kronberg
[contact]

Last Modification: 9 Dec 1999

Canis Major Dwarf

Irregular Galaxy Canis Major Dwarf, centered in Canis Major

Right Ascension	$07: 15(\mathrm{~h} \mathrm{:} \mathrm{~m})$
Declination	$-28:(\mathrm{deg}: \mathrm{m})$
Distance	$25.0(\mathrm{kly})$
Apparent Dimension	$720(\operatorname{arc} \mathrm{~min})$

Discovered in November 2003 by Martin, Ibata, Bellazzini, Irwin, Lewis, and Dehnen.
This small galaxy, or galaxy remnant, was discovered only in 2003 by a team of astronomers from France, Italy, the UK,
 and Australia. It was found from the analysis of data on asymmetries in the population of Galactic red giant stars (of spectral type M) in the 2MASS All Sky catalog. These stars show several large-scale asymmetries, the most significant of which is a strong elliptical-shaped over-density close to the Galactic plane, around the position $\mathrm{l}=240 \mathrm{deg}$, $\mathrm{b}=-8 \mathrm{deg}$ in Galactic coordinates, or about $\mathrm{RA}=07: 20$, $\mathrm{Dec}=-30$, with an extension in Galactic longitude of about $12 \mathrm{deg}(720 \mathrm{arc} \mathrm{min})$. The distance of this concentration was estimated at 25,000 light-years from us and 42,000 light-years from the center of our Milky Way Galaxy.

The authors find that this concentration is the nucleus of a dwarf galaxy which is in a progressive state of disruption, as it orbits our Milky Way Galaxy. This galaxy is thus our nearest known intergalactic neighbor, and a new dwarf member of the Local Group. The major part of its matter has been distributed along its orbit, and forms arc structures around the Milky Way. It may have been a considerable though small galaxy at one time, having of the order of one billion stars, and may have contributed up to about one percent of the matter of our Milky Way.

The image on the right shows the Canis Major Dwarf's nucleus just below the stellar band indicating the equatorial plane of our Milky Way. This is an infrared view, composed from the Two-Micron All Sky Survey (2MASS).

In many respects such as size, orbit and the process of dissolution, the Canis Major Dwarf is similar to SagDEG, which had been discovered in 1994 and taken the place as the nearest known neighbor for nine years.

Some Milky Way globular clusters are loosely grouped around the nucleus of the Canis Major dwarf, and at least some of them may have their origin in the halo of this small galaxy, and may represent the remnant of its former globular cluster system: M79, NGC 1851, NGC 2298, and NGC 2808. Open clusters AM-2 and Tombaugh 2 are strong candidates for being physically associated with the Canis Major Dwarf.

Links:

- University of Strasbough Press Release (November 4, 2003) - LLocal Copy]
- Canis Major Dwarf: A New Closest Galaxy. Astronomy Picture of the Day (APOD) November 23, 2003.

References:

- Nicolas F. Martin, Rodrigo A. Ibata, Michele Bellazzini, Michael J. Irwin, Geraint F. Lewis and Walter Dehnen, 2003. A dwarf galaxy remnant in Canis Major: the fossil of an in-plane accretion onto the Milky Way. To appear in: Monthly Notes of the Royal Astronomical Society. Preprint: astro-ph/0311010
- Michele Bellazzini, Rodrigo A. Ibata, L. Monaco, Nicolas F. Martin, Michael J. Irwin, and Geraint F. Lewis, 2003. The Moon befind the finger. Detection of the Canis Major galaxy in the background of galactic open clusters. To appear in: Monthly Notes of the Royal Astronomical Society. Preprint: astro-ph/0311119

[^1]

Last Modification: 22 Nov 2003 galaxy, while the globular clusters populate the galactic bulge with a strong concentration toward the Galactic center, and the planetary nebulae are somewhat an intermediate object class and occur in both; the four Messier planetaries happen to be situated not far from the disk and situated either within or close to the spiral arms (more acurately, our Local or Orion Arm).

Spiral Arms traced by Messier Objects:

- "+I", Perseus Arm

- "0", Local Arm, Orion Arm
- "-I", Sagittarius Arm, Sagittarius-Carina Arm

Perseus Arm

object
Con Type RA (2000) Dec dist

M 52	NGC	7654	Cas	oc	23:24.2	+61:35	5.0
M103	NGC	581	Cas	OC	01:33.2	+60:42	8.0
M 38	NGC	1912	Aur	oc	05:28.4	+35:50	4.2
M 1	NGC	1952	Tau	SNR	05:34.5	+22:01	6.3
M 36	ngc	1960	Aur	oc	05:36.1	+34:08	4.1
M 37	NGC	2099	Aur	oc	05:52.4	+32:33	

Orion Arm

M 6	GC	6405	Sco	OC	17:40.1	-32:13	2
	NGC	6475	Sco	OC	17:53.9	-34:49	. 8
M 23	NGC	6494	Sgr	OC	17:56.8	-19:01	2.15
M 25	IC	4725	Sgr	oc	18:31.6	-19:15	2
M 57	NGC	6720	Lyr	PN	18:53.6	+33:02	2.3
M 27	NGC	6853	Vul	PN	19:59.6	+22:43	1.25
M 29	NGC	6913	Cyg	OC	20:23.9	+38:32	4.0
M 73	NGC	6994	Aqr	OC?	20:58.9	-12:38	2.0
M 39	GC	7092	Cyg	oc	21:32.2	+48:26	0.825
M 76	NGC	650	Per	PN	01:42.4	+51:34	3.4
M 34	NGC	1039	Per	oc	02:42.0	+42:47	1.4
M 45			Tau	C+N	03:47.0	+24:07	0.38
M 42	NGC	1976	Ori	DN	05:35.4	-05:27	1.6
M 43	GC	1982	Ori	DN	05:35.6	-05:16	1.6
M 78	NGC	2068	Ori	DN	05:46.7	+00:03	1.6
M 35	NGC	2168	Gem	OC	06:08.9	+24:20	2.8
M 41	NGC	2287	смa	OC	06:46.0	-20:44	2.3
M 50	NGC	2323	Mon	oc	07:03.2	-08:20	3
M 47	NGC	2422	Pup	oc	07:36.6	-14:30	6
M 46	NGC	2437	Pup	oc	07:41.8	-14:49	5.4
M 93	NGC	2447	Pup	oc	07:44.6	-23:52	3.6
M 48	NGC	2548	нуа	OC	08:13.8	-05:48	1.5
M 44	NGC	2632	Cnc	OC	08:40.1	+19:59	0.577
M 67	NGC	2682	Cnc	oc	08:50.4	+11:49	2.7
M 97	NGC	3587	UMa	PN	11:14.8	+55:01	2.6
M 4			UMа	DS	12:22	+58:	0.5

Sagittarius Arm
object
Con Type RA (2000) Dec dist

M 20	NGC	651	Sgr	DN	18:02.6	-23:02	5.2
M 8	NGC	6523	Sgr	DN	18:03.8	-24:23	5.2
M 21	NGC	6531	Sgr	oc	18:04.6	-22:30	4.25
M 24	IC	4715?	Sgr	MWP	18:16.9	-18:29	10-15
	NGC	6603	Sgr	oc	18:18.4	-18:25	0
M 16	NGC	6611	Ser	C/N	18:18.8	-13:47	7
M 18	NGC	6613	Sgr	OC	18:19.9	-17:08	4.9
M 17	NGC	6618	Sgr	DN	18:20.8	-16:11	5
M 26	NGC	6694	Sct	OC	18:45.2	-09:24	5
M 1	NG	705	Sct	oc	18:5	-06:	

Halo Globular Clusters

object
Con Type RA (2000) Dec dist

79 (*)	NGC	1904			05:24.5	-24:33	
M 68	NGC	4590	нya	GC	12:39.5	-26:45	33.3
M 53	NGC	5024	Com	GC	13:	+18	59.7
3	NGC	52	CVn	GC	13:42.2	+28:23	
M 5	NGC	5904	ser	GC	15:18.6	+02:05	24.5
M 80	NGC	6093	Sco	GC	16:17.0	-22	32.6
	NGC	6121	Sco	GC	16:23.	-26:32	7.
M107	NGC	617	Oph	GC	16:	-13:03	20.9
M 13	NGC	6205	Her	GC	16:41.7	+36:28	25.
12	NGC	6218	Oph	GC	16:47.2	-01	16.
M 10	NGC	625	Oph	GC	16:57	-04:	14.
M 62	NGC	6266	Oph	GC	17:	-30:07	22.
M 19	NGC	6273	Oph	GC	17:02.6	-26:16	28.
M 92	NGC	6341	Her	GC	17:	+43	26.
M 9	NGC	6333	Oph	GC	17:19.	-18	26.
M 14	NGC	6402	Oph	GC	17:37.6	-03:15	29.0
M 28	NGC	6626	Sgr	GC	18:24.5	-24:	18.6
M 69	NGC	6637	Sgr	GC	18:31.	-32:21	28.0
M 22	nGC	6656	Sgr	GC	18:	-23:	
M 70	NGC	6681	Sgr	GC	18:43.	-32:1	29.4
M 54 (*)	NGC	6715	Sgr	GC	18:55	-30:	88.7
M 56	NGC	6779	Lyr	GC	19:	+30	32.9
M 55	NGC	6809	Sgr	GC	19:40	-30:	
M 71	NGC	6838	Sge	GC	19:53.	+18:	12.
M 75	NGC	686	Sgr	GC	20:06.	-21	61.3
M 72	NGC	6981	Aqr	GC	20:53.	-12:	55.4
M 15	NGC	7078	Peg	GC	21:30.0	+12:10	33.6
M 2	nGC	7089	Aqr	GC	21:33.	-00:49	37.5
M 30	NGC	70	Cap	GC	21:40	-23	

Notes:

- "*": M36, M37 and M38 as well as M11 are sometimes listed as in the Orion Arm
"(*)": M79 and M54 are probably recent immigrants to the Milky Way galaxy's globular cluster system, coming from nearby dwarf galaxies that are currently in close encounters with our Galaxy, and in the process of disintegration: M79 from the Canis Major Dwarf, and M54 from SagDEG.

Links

- Map of Star Clusters and Nebulae within 10,000 light years, by Richard Powell. From his "An Atlas of the Universe" project

```
Hartmut Frommer
Christine Kronberg
```

[contact

Spiral Galaxies (and other disks)

Click icon to see a spiral galaxy of Messier's catalog
> Messier's spiral galaxies; Links
The icon shows M51, the Whirlpool Galaxy.

Among the galaxies, there are apparently three main categories, according to their appearance: the disk galaxies ('cosmic frisbies' according to P. Murdin, D. Allen, and D. Malin), consisting of a huge disk of stars and interstellar matter, which may form interesting patterns, the elliptical galaxies ('cosmic footballs') which are uniformly looking, ellipsoidal agglomerations of stars, and the irregular galaxies ('cosmic misfits') which cannot be integrated in this scheme

Physically, it is not necessary so clear (at least in the opinion of the present author) if this classification is real, because there exist intermediate types even between ellipticals and spirals, i.e. spiral galaxies often have an ellipsoidally formed "bulge" which may be very luminous (as in case of the Sombrero galaxy M104) or rather inconspicuous; some spirals seem to lack this component at all. A heavy bulge is often connected with the presence of a big ellipsoidal core. On the other hand, at least some ellipticals seem to house a disk component also; ths most conspicuous example of such a galaxy is probably Centaurus A (NGC 5128), a prominent galaxy in the Southern hemisphere which is not a Messier object because of its southern declination, but forms a group with the beautiful spiral M83. Centaurus A is regarded as peculiar. One may speculate that e.g. the disk around the center of $\underline{M 87}$, which is often regarded as the accretion disk around the supermassive object in that galaxy's nucleus, may be a smaller manifestation of the same disk phenomenon.

Focussing on the disk (or disk dominated) galaxies, these often show beautiful and conspicuous patterns in the form of spiral arms and/or luminous bars. These structures have been a mystery for a long time, it was thought that there may be physically different classes of disks (e.g., "normal" and "barred" disks), but now it seems as if they are all the consequences of gravitational interactions with neighboring galaxies. Encounters with neighbors cause inhomogenities and un-symmetries in the gravitational field within the disk, which tends to compress the gas in some regions. If the density of the gas in these regions exceeds a certain critical value (which depends on parameters as the temperature), star formation can take place, resulting in the formation of red diffuse emission nebulae and blue clusters of hot young stars, which slowly change their color to the yellow when they come to age, and their hottest stars have disappeared (i.e., exploded as supernovae).

The star forming regions tend to be aligned along spiral arms, as the denser regions in the interstellar matter apparently prefer to form such patterns. When getting older, they sometimes stay conspicuous as yellowish "fossil arms", which can be traced in several galaxies.

Galaxies are classified, according to their appearance, in the so-called Hubble scheme (after its inventor, Edwin Powell Hubble; see e.g. our illustration of the Hubble Scheme with Messier galaxies). This scheme defines the classes listed above, i.e. spiral, elliptical and irregular galaxies, and is especially interesting for spirals: Those with pronounced bar structures are called "barred spirals" and classified "SB", while normal spirals are simply called "S" or sometimes "SA"; some authors take "SAB" or "S(B)" for mixed types. Spiral galaxies, "normal" and barred, with conspicuous bulges (especially near their center) are classified "Sa" or "SBa", those which have prominent bulges and pronounced arms are clssified "Sb" or "SBb", and those which are dominated by the arms are "Sc" or "SBc". If the core and bulge seems to be lacking, a galaxy is classified "Sd" or "SBd", and those which have no pronounced core and show irregularities are classified as "Sm"; these represent a type between disk and irregular galaxies.

Some of the galaxies, mostly those who had no closer encounters for a longer period of time, and those who have lost most of their interstellar matter for some reason, do not show any conspicuous pattern within their disks; these are often called "S0" or "lenticular" galaxies. Although they are disks, they can often hardly be distinguished from ellipticals from their appearance, and have often been misclassified in the past. This misclassification happened to all the four Messier lenticulars in the past, and to many other galaxies of this type.

When undergoing a heavy interaction, or collision, with a massive neighbor, disk galaxies may be distorted very peculiarly, and then are often classified as irregular; this is the case for the only Messier irregular, M82.

All disk galaxies have a very different appearance, depending from what direction they are seen, or under which angle toward the line of sight (to us) their disk is inclined. According to this situation, they are either seen from their edge (or "edge-on"), or from near their equatorial plane, as thin, flat, linear and elongated patches, often with dusty structures along their equators, or almost from their poles so that we can see their disks "face-on". Tom Polakis has featured some edge-on galaxies.

Our Milky Way is one of the big and more massive spiral galaxies, and is of Hubble type Sbc, or perhaps SBbc if it should have a bar.

Spiral galaxies in Messier's catalog: M31, M33, M51, M58, M61, M63, M64, M65, M66, M74, M77, M81, M83, M88, M90, M91, M94, M95, M96, M98, M99, $\underline{\text { M100, }}$ M101, M104, M106, M108, M109.
Other early known spiral galaxy: Milky Way.
(Probable) S0 galaxies in Messier's catalog: M84, M85, M86, NGC 5866 (M102 ?).

The irregular galaxy M82 is also a distorted disk galaxy.
Links:

- Look at Spiral Galaxies in Messier's Catalog
- Also look at our collection of some significant non-Messier spiral galaxies

This webpage was selected as Houston Astronomical Society Site Of The Week for August 17, 2003

M 61

Spiral Galaxy M61 (NGC 4303), type SABbc, in Virgo

Right Ascension	$12: 21.9$ (h:m)
Declination	$+04: 28$ (deg:m)
Distance	60000 (kly)
Visual Brightness	9.7 (mag)
Apparent Dimension	6×5.5 (arc min)

Discovered 1779 by Barnabus Oriani.

M61 was discovered by Barnabus Oriani on May 5, 1779 when following the comet of that year, 6 days before Charles Messier's discovery, who had seen it on the same day as Oriani but mistaken it for the comet. Messier mistook it for two nights more, until he realized that it did not move. As for a small number of others, this object was assigned an own number, H I.139, by William Herschel, who normally avoided to give own numbers to Messier's objects, when he observed and cataloged it on April 17, 1786.

M61 is one of the larger galaxies in the Virgo cluster; its 6 arc minutes of diameter correspond to about 100,000 light years, similar to the diameter of the Milky Way galaxy. Its 10th magnitude corresponds to an absolute magnitude of -21.2.

Four supernovae have been observed in M61: 1926A (12.8 mag) was discovered by Wolf and Reinmuth, 1961I (mag 13, Humason), 1964F (mag 12, Rosino), and 1999gn (13.4 mag, Dimai). NED gives the following types and (alternative values for) maxima: SN 1926A, type IIL, 14pv; SN 1961I, type II, 13.0; SN 1964F, type I, 14.0. The Supernova 1961I appeared in the spiral arms, about 82 " from the center, and was photographed by the Lick observatory, see e.g. Burnham (you may also order this image from them as slide or print).

- Historical Observations and Descriptions of M61
- More images of M61
- Amateur images of M61
- SIMBAD Data of M61
- NED Data of M61
- Publications on M61 (NASA ADS)
- Observing Reports for M61 (IAAC Netastrocatalog)

Hartmut Frommert

Christine Kronberg [contact]

Last Modification: 28 Dec 1999

M 83

Spiral Galaxy M83 (NGC 5236), type SABc, in Hydra

Southern Pinwheel

Right Ascension	$13: 37.0(\mathrm{~h}: \mathrm{m})$
Declination	$-29: 52(\mathrm{deg}: \mathrm{m})$
Distance	$15000(\mathrm{kly})$
Visual Brightness	$7.6(\mathrm{mag})$
Apparent Dimension	$11 \times 10(\operatorname{arc} \mathrm{~min})$

Discovered 1751-52 by Abbe Nicholas Louis de la Caille

M83 was classified as intermediate between normal and barred spiral galaxies by G. de Vaucouleurs, in his classification this is $\mathrm{SAB}(\mathrm{s}) \mathrm{c}$. It is magnificient in our image, has very well defined spiral arms and displays a very dynamic appearance, appealing by the red and blue knots tracing the arms. The red knots are apparently diffuse
 gaseous nebulae in which star formation is just taking place, and which are excited to shine by its very hot young stars. The blue regions represent young stellar populations which have formed shortly (i.e., some million or some dozens of million years ago). Between the pronounc spiral arms are regions with fewer stars. Dark dust lanes follow the spiral structure throughout the disk, and may be traced well into the central region to the nucleus, which has only 20" diameter. This nucleus shows strong emission lines. It is composed of an older yellowish stellar population which dominates the whole central region, and extends along the barlike structure

Our image was obtained by David Malin with the 3.9-meter Anglo-Australian Telescope of the Anglo-Australian Observatory. Interested parties can get more detailed information on this image. Also available are more images of M83 with the same telescope.

David Malin, in his older publications, always gave a distance of about 25 million light years, as he does in his book A View of the Universe in chapter 4, while in his Galaxies chapter 8, he joins the lot of those claiming a distance of about 10 million light years, and gives an argument, namely that the brightest stars can be viewed as individuals over this distance. M83 recedes at $337 \mathrm{~km} / \mathrm{sec}$, implying a bit larger distance from Hubble's law ($\mathrm{H} 0=75$ yields about 15 million light years, uncorrected for the disturbation by the Virgo cluster of galaxies, the Virgo centric flow, but in excellent agreement with the value of 15.3 million light years given in R. Brent Tully's Nearby Galaxies Catalog). Kepple/Sanner give another deviating distance value of 22 million ly.

This galaxy is sometimes called the "Southern Pinwheel". It forms a small physical group, the M83 group, with the peculiar radio galaxy Centaurus A (NGC 5128) and the unusual galaxy NGC 5253 in Centaurus. R. Brent Tully also lists the following smaller and fainter presumable (or possible) members of this group: NGC 4945, NGC 5102, NGC 5164, NGC 5408, ESO 381-20 (MCG-6-28-017; 1243-33), ESO 324-24 (MCG-6-30-003; 1324-41), ESO 444-84 (MCG-5-32-000; 1334-27), ESO 325-11 (1342-41), and ESO 383-87 (MCG-6-30-025; 1346-35).

Five or six supernovae were reported in M83 up to now, more than in any other Messier galaxy:

- 1923A was observed by C.O. Lampland at Lowell Observatory at mag 14
- 1945B appeared on July 13, 1945 and reached mag 14.2). This supernova was only detected in 1990 by W. Liller on photographic plates taken at Harvard's station at Bloemfontein (South Africa), and could be traced from July 13 to August 7 (see IAU Circular 5091)
- 1950B was observed by G. Haro and reached mag 14.5 in its maximum,
- 1957D was discovered by H.S. Gates on December 13, 1957 and reached only mag 15.0, it was about 3 ' NNE of the nucleus
- Supernova 1968L was discovered visually by amateur astronomer Jack C. Bennett of Pretoria, South Africa, when sweeping for comets; this was a type I, located 5 " preceding the nucleus and reached mag 11 to 12.
- 1983N appeared on July 3, 1983 and became as bright as 12.5 mag.

For years, M83 had been the galaxy with most discovered supernovae, but recently NGC 6946 came up with the same number of 6, or even one more if 1945B should be an error.

M83 was discovered by Abbe Nicholas Louis de la Caille at the Cape of Good Hope in 1751-52, it was his object Lacaille I.6. Thus it became the first galaxy discovered beyond the Local Group. It was next cataloged by Charles Messier on February 17, 1781; from his mid-northern location in Paris (at 49 degrees Northern latitude), it is such a difficult object that he stated that: "One is only able with the greatest concentration to see it at all." The present author can confirm it is one of the most difficult Messier objects from South Germany. Due to this fact, older Northern-compiled catalogs tended to underestimate its brightness considerably; e.g., Becvar has it at a mere 10.1 mag only.

Early 19th century Australian observer James Dunlop has it as No. 628 in his catalog. Its spiral structure was noted and sketched by William Lassell who described it as a "three-branched spiral."

M83 is one of the showpieces in the southern deep sky, but difficult for mid-northern observers, as already stated. It is even rather difficult to find: First locate one of the stars Gamma or Pi Hydrae. It can be found either by star hopping from Gamma Hydrae (mag 3.00, spectral type G5 III) which is 6.5 deg N and 3deg 15' (19 min in RA) W, or from Pi Hydrae (3.27 mag , spectral type K2 III) from which M83 is about 3deg 15 ' S and $6 \mathrm{deg} 20^{\prime} \mathrm{W}$. Following a trail of 5th to 7th mag stars, one arrives at a yellowish 5.83-mag star of spectral type F6 and a mag 7.0 white star (spectrum A5 V) which lie about 30 ' NE of M83. Star hopping from Gamma will bring you close to NGC 5061 (H 1.138), an elliptical galaxy of mag 10.2.

Southerners may find it easier by locating M83 from the constellation Centaurus, as it is just north of the border from Hydra to this constellation. From Iota and Theta Centauri, in the Head of the Centaurus figure, locate the stars i, h and k (mentioned by Messier) as well as g Centauri, all between mag 4 and 5; they are also known as $1 i$ Cen, $2 g$ Cen, $3 k$ Cen, and $4 h$ Cen. g and i just point to M83 (and further to Gamma Hydrae); the galaxy comes beyond i, at double distance from it than has g.

- Historical Observations and Descriptions of M83
- More Anglo-Australian Telescope images of M83
- ESO/VLT images of M83
- NRAO/VLA radio images of M83
- Chandra X-ray Observatory images of M83
- GALEX images of M83 in the ultraviolet light
- More images of M83
- Amateur images of M83
- SIMBAD Data of M83
- NED Data of M83
- Publications on M83 (NASA ADS)
- Observing Reports for M83 (IAAC Netastrocatalog)

Hartmut Frommert
 Christine Kronberg
 [contact]

Classification of the Milky Way Galaxy

Our Galaxy is classified as Sb (Sky Catalogue 2000.0) or Sbc by most sources. Newer investigations have brought up more and more evidence that the Milky Way probably has a bar, or barlike structure, in its central region, which would modify its classification to become a barred spiral of type SB, or intermediate type between barred and "normal" spirals, SAB.

Already in the 1970s, Gerard de Vaucouleurs has classified the Milky Way Galaxy as "SAB(rs)bc II", where

- "SAB" means that the Milky Way has (probably) a less evolved central bar structure - "SA" would be a "normal", barless spiral, "SB" a barred spiral galaxy
- "(rs)" means that there is a weak central ring of stars and gas around the nucleus
- "bc"

Hartmut Frommert

Christine Kronberg
[contact]

The Structure of the Milky Way Galaxy

As the Milky Way is seen from Earth as a diffuse band all around the sky, and as we live within it and have no opportunity to view it from outside, our Galaxy's global structure is not immediately obvious.

Our Galaxy is classified as Sb (Sky Catalogue 2000.0) or Sbc by most sources. Newer investigations have brought up more and more evidence that the Milky Way probably has a bar, or barlike structure, in its central region, which would modify its classification to become a barred spiral of type SB, or intermediate type between barred and "normal" spirals, SAB.

- More on the Classification of the Milky Way

Hartmut Frommert
Christine Kronberg
[contact]

Otare namestameanse
1)
-
\cdots
5*
EWE

 \qquad

 \qquad

[^2]| Right Ascension | $00: 42.7(\mathrm{~h}: \mathrm{m})$ |
| :--- | :---: |
| Declination | $+41: 16(\mathrm{deg}: \mathrm{m})$ |
| Distance | $2900(\mathrm{kly})$ |
| Visual Brightness | $3.4(\mathrm{mag})$ |
| Apparent Dimension | $178 \times 63($ (arc min) |

Known to Al-Sufi about AD 905 .
$\mathbf{M 3 1}$ is the famous Andromeda galaxy, our nearest large neighbor galaxy, forming the Local Group of galaxies together with its companions (including $\underline{\underline{M} 32}$ and $\underline{\text { M11 }}$ two bright dwarf elliptical galaxies), our Milky Way and its companions, M33, and others
Visible to the naked eye even under moderate conditions, this object was known as the "little cloud" to the Persian astronomer Abd-al-Rahman Al-Sufi, who described and depicted it in 964 AD in his Book of Fixed Stars: It must have been observed by and commonly known to Persian astronomers at Isfahan as early as 905 AD , or earlier.
R.H. Allen ($1899 / 1963$) reports that it was also appeared on a Dutch starmap of 1500 . Charles Messier, who cataloged it on August 3 , 1764 , was obviously unaware of this carly reports, and ascribed its discovery to Simon Marius, who was the first to give a telescopic description in 1612, but (according to R.H. Allen) didn't claim its discovery. Unaware of both Al Sufi's and Marius' discovery, Giovanni Batista Hodierna independently rediscovered this object before 1654 . Edmond Halley, howeve
his 1716 treat of "Nebulae", accounts the discovery of this "nebula't to the French astronomer Bullialdus (Ismail Bouillaud), who observed it in 1661 ; but Bullialdus his $\underline{1716 \text { treat of "Nebulae", accounts the discovery of this "nebula" to the French astronomer Bullialdus (Ismail Bouillaud), wh }}$ whentions that it had been seen 150 years earlier (in the early 1500 s) by some anonymous astronomer (R.H. Allen, $1899 / 1963$).

It was longly believed that the "Great Andromeda Nebula" was one of the nearest nebulae. William Herschel believed, wrongly of course, that its distance would "not exceed 2000 times she distance of Sirius" (17,000 light years); nevertheless, he viewed it at the ne
disk of 850 times the distance of Sirius in diameter and of a thickness of 155 times that distance.

It was William Huggins, the pioneer of spectroscopy, who noted in 1864 the difference between gaseous nebula with their line spectra and those "nebulae" with star-like, continuous spectra, which we now know as galaxies, and found a continuous spectrum for M31 (Huggins and Miller 1864).
In 1887, Isaac Roberts obtained the first photographs of the Andromeda "Nebula," which showed the basic features of its spiral structure for the first time.
In 1912 , V.M. Slipher of Lowell Observatory measured the radial velocity of the Andromeda "nebula" and found it the highest velocity ever measured, about $300 \mathrm{~km} / \mathrm{sec}$ in approach. This already pointed to the extra-galactic nature of this object. According to Burnham, a better value is about $266 \mathrm{~km} / \mathrm{sec}$, but R. Brent Tully gives 298
$\mathrm{~km} / \mathrm{sec}$, and NED has again $300+1-4 \mathrm{~km} / \mathrm{s}$ as the modern value. Note that all the previous values describe the motion with respect to our Solar System, i.e heliocentric $\mathrm{km} /$ sec, and NED has again $300+1 /-4 \mathrm{~km} /$ as the modern value. Note that all the previous values describe the motion with respect to our Solar System, i.e. heriocentric
motion, not that w.r.t. the Milky Way's Galactic Center. The later value can be obtained by correcting for the motion of our Solar System around that center. The modern motion, not that w.r.t. the Milky Way's Galactic Center. The later value can be obtained by correcting for the motion of our Solar System around that center. The
values for Galactic rotation and heliocentric radial velocity yield that the Andromeda Galaxy and the Milky Way are approaching each other at about $100 \mathrm{~km} / \mathrm{sec}$.
In 1923 , Edwin Hubble found the first Cepheid variable in the Andromeda galaxy and thus established the intergalactic distance and the true nature of M31 as a galaxy. Because he was not aware of the two Cepheid classes, his distance was incorrect by a factor of more than two, though. This error was not discovered until 1953, when the 200--inch Palomar telescope was
(galaxy) in 1929 (Hubble 1929 .
At modern times, the Andromeda galaxy is certainly the most studied "external" galaxy. It is of particiclar interest because it allows studies of all the features of a galaxy
from outside which we also find in in Miky Way, but cannot tobserve as sthe greatest part of our Galaxy is hidden ty interstellar dust. Thus there are continuous studies of the tom outside which we also find in Miky Way, but cannot observe as the greatest part of our Galaxy is hidden by interstellar dust. Thus there are continuous studies of the galactic nucleus, companion galaxies, and more.
Some of the features mentioned above are also of interest for the amateur: Even Charles Messier found its two brightest companions, $\mathbf{M} 32$ and 1110 which are visible in binoculars and conspicuous in small telescopes, and created a drawing of all three. These two relatively bright and relatively close companions are visible in many photos of M31, including the one in this page. They are only the brightest of a "swarm" of smaller companions which surround the Andromeda Galaxy, and form a subgroup
he Local Group. At the time of this writing (September 2003), at least 11 of them are known: Besides M32 and M110 these are NGC 185, which was discovered by William Herschel, and NGC 147 (discovered by d'Arrest) as well as the very faint dwarf systems And I, And II, And III, possibly And IV (which may however be a cluster spiral galaxy in Triangulum, and its probable companion LGS 3 belong to this subgroup, or the more remote Local Group member IC 1613 , or one of the possible member spiral galaxy in Triangulum, and its
candidates UGCA 86 or UGCA 92 .

The Andromeda Galaxy is in notable interaction with its companion M32, which is apparently responsible for a considerable amount of disturbance in the spiral structure of M31. The arms of neutral hydrogene are displaced from those consisted of stars by 4000 light years, and cannot be continuously followed in the area closest to its
maller neighbor. Computer simulations have shown that the disturbances can be modelled by a recent close encounter with a small companion of the mass of M32. Very smaller reighbor. Computer simulutions have shown that the disturbances can be modelled by y recent close encounter
probably. M32 has also suffered from this encounter by losing many stars which are now spread in Andromeda's halo.

The brightest globular cluster of the Andromeda Galaxy M31, G1, is also the most luminous globular in the Local Group of Galaxies; its apparent visual brightness from Earth is still about 13.72 magnitudes. It outshines even the brightest globular in our Milky Way, Omega Centauri, and can be glimpsed even by better equipped amateurs under very favorable conditions, with telescopes starting at 10 -inch aperture (see Leos Ondra's article in $S k y$ \& Telescope, November 1995, p. 68-69). The Hubble Space Telescope was used to investigate globular cluster G1 in mid-1994 (published April 1996). While the easiest, G1 is not the only M31 globular cluster which is in the reach
of large amateur telescopes: Amateur Steve Gootlieb has observed 18 globular clusters of M31 with a 44 cem telescope. With their 14 -inch Newton and CB245 CCD amera, observers of the Ferguson Observatory near Kenwood, CA have photographed G 1 and four fainter M31 globulars. Barmby et.al (1999) have found 435 globular camera, observers of the Ferguson Observatory near Kenwood, CA have photographed G1 and four fainter M31 globulars. Barmoy e.a/ (1999) have found 455 globuar
cluster candidates in M31, and estimate the total number at $450+/-100$. The astrophotographer is even better off, as he can gather the fainter light of the fine detail in the spiral arms, as in our image: Amateurs can obtain most striking pictures
even with inexpensive equipment from wide-field exposures to detailed closeeups. Also in hhotography, better equipment pays off, as is demonstrated by our image, even with inexpensive equipment, from wide-field exposures to detailed close-ups. Also in photography, better equipment pays off, as is den
which was obtained by (and is courtesy of Texas amateur Jason Ware, with a 6 -inch refractor. More information on this image is available.

The brightest star cloud in the Andromeda galaxy M31 has been assigned an own NGC number: NGC 206, because William Herschel had taken it into his catalog as H V. 36 on the grounds of his discovery observation of October 17, 1786. It is the bright star cloud at the upper left, just below a conspicuous dark nebula, in our photograph Despite the large amount of knowledge we now have about the Andromeda Galaxy, its distance, though among the best known intergalactic distances, is not really well
known. While it is well established that M31 is about $15-16$ times further away than the Large Magellanic Cloud (LMC), the absolut value of this measure is still Known. While it is well established that $M 31$ is about $15-16$ times further away than the Large Magellanic Cloud (LMC), the absolute value of this measure is still
uncertain, and in current sources, usually given between 2.4 and 2.9 million light-years - a consequence of the uncertainty in the LMC distance and thus the overall uncertain, and in current sources, usually given between 2.4 and 2.9 million light-years - a consequence of the uncertainty in the LMC distance and thus the overall
intergalactic distance scale. E.g., the semi-recent correction from data by ESA's sastrometrical satellite Hipparcos has pushed this value up by more than 10 percent, from intergalactic distance scale. E.g., the semi-recent correction fre
about $2.4-2.5$ to the about 2.9 million light-years we use here.
Under "normal" viewing conditions, the apparent size of the visible Andromeda Galaxy is about 3×1 degrees (our acurate value, given above, is 178×63 arc minutes,

 estimates for our Milky Way galaxy, this is considerably less than the mass of our galaxy, implying that the Milky Way may be much denser than M31. These results sre Wilkinson, 2000).

The Hubble Space Telescope has revealed that the Andromeda galaxy M31 has a double nucleus. This suggests that either it has actually two bright nuclei, probably
because it has "eaten" a smaller galaxy which once intruded its core, or parts of its only one core are obscured by dark material probably dust. In the first case this sec because it has "eaten" a smaller galaxy which once intruded its core, or parts of its only one core are obscured by dark material, probably dust. In the first case, this second nucleus would be an illusion causes by a dark dust cloud obstructing parts of a single nucleus in the center of M31.
Up to now, only one supernova has been recorded in the Andromeda galaxy, the Supernova 1885 , also designated S Andromedae. This was the first supernova discovered beyond our Milky Way galaxy, on August 20, 1885, by Ernst Hartwig (1851-1923) at Dorpat Observatory in Estonia. It reached mag 6 between August 17 and 20 , and it endenty found by several observers. However, only Hartwig realized its significance. It faded to mas 16 in February 1890 .

- Historical Observations and Descriptions of M31

Images of M31 from the Isaac Newton Telescopoe, by the INT Team and David Malin

- More images of M31
- Amateur images of M31
- Rosat has explored M31 in the X-ray light
- Chandra X-ray Observatory images of M31
- GALEX images of M31 in the ultraviolet light
- Amateur images of M31 and M32

Animation explaining the structure of M31

Links

- Atlas of the Andromeda Galaxy by Paul W. Hodge. University of Washington Press, 1981
- DIRECT: A project to directly determine the distances of M31 and M33 (by Kris Stanek, Harvard-Smithsonian CfA)
- John A. Blackwell's M-31 Atlas
- Jack Schmidling's M31 page
- Nultispectral Image Collection of M31, SIRTF Multiwavelength Messier Museun
- SIMBAD Data of M31

NED Data of M31
Publications on M31 (NASA ADS)

- Observing Reports for M31 (IAAC Netastrocatalog)

References

- P. Barmby, J.P. Huchra, J.P. Brodie, D.A. Forbes, L.L. Schroeder and C.J. Grillmair, 1999. Preprint astro-ph/9911152.
 - Edwin P. Hubble, 1929. Astrophysical Journal, Vol. 69, p. 103 - 157 and plates III-VIII
willian Hugins and Wa Miller 1864 Onal,

The Satellite Galaxy System of the Milky Way Galaxy

Galaxy	RA	Dec	Type	m_v	dim	RV	Dist
	$\mathrm{h}: \mathrm{m}$	$\mathrm{d}: \mathrm{m}$		mag	arc min	km/s	kly
SMC	00:51.7	-73:14	SB(s)m pec	2.3	280×160	- 30	210
Scl dw	01:00.0	-33:42	dSph/E3 pec	10.5 p		+162	300 :
Phe dw (?)	01:51.1	-44:27	Irr	13.1	4.9×4.1		1600:
For dw	02:39.9	-34:32	dSph/E2	8.1	12.0×10.2		500
LMC	05:19.7	-68:57	SB (s)m	0.1	650×550	+ 13	179
Car dw	06:14.6	-50:58	dSph/E3	20.9	23.5×15.5		360
CMa dw	07:15	-28	Irr				25
Leo A (?)	09:59.4	+30:45	IBm V	12.9	5.1×3.1		2500
Leo I	10:08.5	+12:18	dE3	9.8	9.8×7.4		900
Sex dw	10:13.2	-01:37	dSph/E3	12.			320
Leo II	11:13.5	+22:10	dSph/E0 pec	12.6	12.0×11.0		750
UMi dw	15:08.8	+67:12	dSph/E4	10.9	41.0×26.0		240
Dra dw	17:20.1	+57:55	dSph/E0 pec	9.9	51.0×31.0		280
Milky Way	17:45.6	-28:56	SAB (s)bc I-II		-	0	28
SagDEG	18:55	-30:30	dSph/E7		490×190	+168	88

- The Local Group of Galaxies

Hartmut Frommert
Christine Kronberg
[contact]

The Large Magellanic Cloud, LMC

Irregular Galaxy LMC, the Large Magellanic Cloud in Dorado

Right Ascension	$5: 23.6$ (h:m)
Declination	$-69: 45(\mathrm{deg}: \mathrm{m})$
Distance	$179.0(\mathrm{kly})$
Visual Brightness	0.1 (mag)
Apparent Dimension	650x550 (arc min)

Known pre-historically on the Southern hemisphere. Mentioned 964 A.D. by Al Sufi. Probably mentioned by Amerigo Vespucci in 1503-4. Discovered by Magellan 1519.

The Large Magellanic Cloud, together with its apparent neighbor and relative, the Small Magellanic Cloud, are conspicuous objects in the southern hemisphere, looking like separated pieces of the Milky Way for the naked
 eye. They were certainly known since the earliest times by the ancient southerners, but these people produced little documents which are still preserved. The first preserved mention of the Large Magellanic Cloud was by Persian astronomer Al Sufi, who in 964 A.D., in his Book of Fixed Stars calls it Al Bakr, the White Ox, of the southern Arabs, and points out that while invisible from Northern Arabia and Baghdad, this object is visible from the Strait of Babd al Mandab, at 12deg 15' Northern latitude. Next, it was probably mentioned by Amerigo Vespucci in a letter written during his third voyage about $1503-4$, as one of "three Canopes, two bright and one obscure;" Amerigo's bright "Canopes" are thought to be the Magellanic Clouds, while the obscure one is probably the Coalsack dark nebula. Eventually, it was Magellan and his discovery expedition who brought them to our knowledge in 1519.

Both Magellanic Clouds are irregular dwarf galaxies orbiting our Milky Way galaxy, and thus are members of our Local Group of galaxies. The Large Magellanic Cloud, at its distance of 179,000 light years, was longly considered the nearest external galaxy, until in 1994, the Sagittarius Dwarf Elliptical Galaxy was discovered at only about 80,000 light years. (Our current distance value takes into account the corrected Cepheid distance scale based on the Hipparcos satellite data published in early 1997.)

Although a small irregular galaxy, the LMC is full of interesting objects including diffuse nebulae (especially the Tarantula Nebula, NGC 2070, a giant H II region), globular and open clusters, planetary nebulae, and more.

- Some prominent LMC objects

On February 24, 1987, supernova 1987A occurred in the Large Magellanic Cloud, which was the nearest observed supernova since Keplers, which occured before the invention of the telescope. Supernova 1987A, peculiar and of type II, was one of the most interesting objects for the astrophysicists in the 1980s (some even say of this century).

In John Caldwell's observing list. In the Astronomical League's Southern Sky Binocular Club list.

The image in this page was obtained by David Malin with the Anglo-Australian Telescope. This image is copyrighted and may be used for private purpose only. For any other kind of use, including internet mirroring and storing on CD-ROM, please contact the Photo Permissions Department of the Anglo Australian Observatory.

- More information on this image (David Malin)
- Donald R. Pettit's LMC astrophoto from the International Space Station, ISS (Feb 2003)
- Multispectral Image Collection of the Large Magellanic Cloud, SIRTF Multiwavelength Messier Museum
- NED data of LMC
- SIMBAD Data of LMC
- Observing Reports for the Large Magellanic Cloud - LMC (IAAC Netastrocatalog)

Hartmut Frommert
Christine Kronberg
[contact]

Globular Star Clusters

$\substack{\text { Coboular clus } \\ \text { in diameer }}$

Since their discovery and resolution, globular clusters were always thought or suspected to be physical obiects, agglomerations or swarms of stars held together by their

The distribution of the globular clusters in our Milky Way galaxy is concentrated around the galactic center in the Sagitarius -- Scorpius -- Ophicchus region: Of the 138

Of the 151 known clusters, 138 (9.1 .4 percent) are concentrated in the hemisphere centered on Sagitarius, while only 13 globulars 8.6 percent) are on the opposites side of
us (among them M79). of these 13 , four (includung M79) are suspected to be members of the remnant slobular cluster system of the Canis Major Dwarf galaxy discovered us among them M79). Of these 13 , four (including M79) are suspected to be mely
in 2003, which again is going to be integrated int the Milky Way's Galactic Halo.

This pronounced anisotropy in the distribution of globular clusters was of historic importance when Hatlow Shapley, in 1917 , derived from it that the center of our galaxy is lying a a a considerable distance in the direction of Sasitarius and not close to our solar system as had been thought previously (however, he significicantly overestimated
the size of the Miky Way as a whole, as well as the size of the slobular cluster system and our distance from the Calactic Center).
位

Spectroscopic study of globular clusters shows that they are much lower in heavy element abundance than stars such as the Sun that form in the disks of galaxies. Thus,
globular clusters are believed to be very old and consisted from an earitier generation of stars (Population II), which have formed from the more primortial mater presen Hobuar clusters are believeret to be very old and consisted from an earlier enenaration of stars Popplataion III, which have formed from the more primordial mater present

Iobular clusters typically contanin number of variable stars, in particular RR Lyrae stars which were once called "Cluster Variables" because of their abundance in
lobulars. Their frequency is varying from cluster to cluster. A small number of four globular clusters also contains llanetary nebulae; these appear to be se sorare because slobulars. Their frequency is varying from cluster to cluster. A small number of four globular cluster also contains planetary nebulae; these appear to be so rare because
the short lifitime of planetary nebulae. They also contain a large number of white dwarfs and, at leastin some cases, many neutron stars, some of which show up as pulsars.
The H -R diagrams for globular clusters (here shown for M 5 typically have short main sequences and prominent horizontal branches, this again represents very old stars that have evolved past giant or supergiant phases. Comparison of the measured HRD of each globular cluster with theoretical model HRDD derived from the theory of stellar all globular clusters seens to to of of about the same age: there seems to bea a physical reason that they all formed in in a short period of

 must be about 20% higher. Considering the various relations which are inportant for und

Although significantly slower compared to the less densely packed and less populated open clusters, these disturbations are tending to disurut the clusters. The currently existing globulars are just the survivers of a perhaps significantly larger population, the rest of which has been distruted and spread their stars throughout the Gall
halo. The process of destruction still works, and it was estimated that about half of the Milky Way globulars will cease to exist within the next 10 billion years.
Our galaxy has a system of perhaps about 180 to 200 globular clusters (including the 29 Messier globulars, of which two may have immigrated only recenty: M 54 and
M79). Most other galaxies have globular cluster systems as well, in some cases (eg,. for M877 containing several thousands of globulars! A smal number of the known

While all the globulars in our Miiky Way, and our bis companion, the Andromeda Galaxy M331, are old, other Local Group galaxies as the Large and the Small
Mageellanic Cloud as well as he Trianyulum Galaxy M33 also contain considerably younger globulars star clusters, which can be concluded with certainty from pectroscopic investigations. These galaxies contain also extremely large diffuse nebula with masses of the order of globular clusters, clear candidates for future young
pobulars currently in formation, notably the Tarantul Nebula NGC 2070 in the LMC and NGC 604 in $M 33$ A A large number of over 100 young globular clusters have been detected recently in $\mathbf{M} 82$ a in irregular galaxy beyond the Local Group.

Messier's globular clusters: $\underline{\mathrm{M} 2,} \underline{\mathrm{M} 3}, \underline{\mathrm{M} 4}, \underline{\mathrm{M} 5}, \underline{\mathrm{M} 9}, \underline{\mathrm{M} 10}, \underline{\mathrm{M} 12}, \underline{\mathrm{M} 13}, \underline{\mathrm{M} 14}, \underline{\mathrm{M} 15}, \underline{\mathrm{M} 19}, \underline{\mathrm{M} 22}, \underline{\mathrm{M} 28}, \underline{\mathrm{M} 30}, \underline{\mathrm{M} 53}, \underline{\mathrm{M} 54}, \underline{\mathrm{M} 55}, \underline{\mathrm{M} 56}, \underline{\mathrm{M} 62}, \underline{\mathrm{M} 68}, \underline{\mathrm{M} 69}, \underline{\mathrm{M} 70}, \underline{\mathrm{M} 71}, \underline{\mathrm{M} 72}, \underline{\mathrm{M} 75}$, M 99 , M80, M922 M107.
Other early know globular clusters: NGC 104 (47 Tucanae), NGC 4833, NGC 5139 (Omega Centauri), NGC 6337.
Links

- The Miky Way Globular Clusters

Planetary Nebulae in Globular Clusters (in the Milky Way) Link to the most current lobular cluster data file, compiled by W. Harris of the Physics and Astronomy department of McMaster University. We hold possibly

ARVAL Catalog of of Brigh List Cliobular Clusters (Mikkel Steine)
Globlar Cluster Catalog: Info and references, by Leroy W.L. Guatney. Includes a Gilobular Observing "Club".
$\frac{\text { A galactic globluar cluster datatase, by Marco Castelani. Data (Harris), images (DSS) and color-magnitude diagrams. }}{\text { Virtual Tour of the Milky Way Geblowar Cluster system (Limber Observalory) }}$

- Manos Courobular Cluster Page

Faint globular huninge
Barbarr Wilson's Obscure Globular Clusters of the Milky Way: Terzan Clusters and UKS-1, Extreme Halo Globulars (NGC 2419; AM 1; Pal 3. 4. 14: Eri) bulalomar Glibulur Clusters, by Jim Shields, Barbara Wilson and Doug Snyder (including a Palomar Marathon)
Distribution of Milky Way Globular Clusters, an an animated graphical investigation by wil Milan
Globular Clusters in other galaxies:
o Catalog of Gilobular Cluster Systems of Other Galaxies by W. .E. Haris (we hold a possibly older copy - also see NED Level5 article); Globular Clusters in Other or anaxies (M. Kisser P-Patig)
Extragalactic Clobuluss. Te
Extragalactic Globulurs- - The Brightest Globular Cluster in Eight Nearby Galaxies, hints for observers by Jim Shields

- - Aloo a lo Gok atoblar our Collectection of somese sigignificant non-Messier globulars

References

 $\frac{\text { Francisco. p. } 325-336}{\text { Kenneth Glyn Jones, } 1}$

Stermery State Astron. Inst., Moscow
P. Melotete, 1915. A catalogue of star cluster shown on the Franklin-Adams chart plates. Mem. R. Astron. Soc., $60.175-186$

Helen B. Sawyer (Hoges), 1947. A Bibliography of I Individual Globular Clusters. The University of Toronto Press.
Helen B. Sawyer Hogg, 1959. Star Clusters. In: S. Fligge (ed.), Handbuch der Phssik [Encyclopedia of Physics.) Vol. LIII (53): Astrophysiik vv: Sternsysteme

Open Star Clusters Open clusters are physically related groups of stars held together by mutual gravitational attraction. Therefore, they populate a limited region of space, typically much
smaller than their distance from us, so that they are all roughly at the same distance. They are believed to orignate from lagee cosmic gas and dust clouds (diffuse nebulae) in the Milky Way, and to continue to orbit the galaxy through the disk. In many clouds visible as bright diffuse nebulae, star formation still takes place at this moment, so
that we can observe the formation of new young star clusters. The process of formation takes only a considerably short $\mathbf{t i m e}$ compared to the lifetime of the cluster, so that that we can observe the formation of new young star clusters. The process of formation takes only a considerably short time compared to the lifetime of the c
all member stars are of similar age. Also, as all the stars in a cluster formed from the same diffuse nebula, they are all of similar initial chemical composition.

Open clusters are of great interest for astrophysicists because of these properties

1. the stars in a cluster are all at about the same distance
2. the stars have approximately the same age
3. the stars have about the same chemical composition
.
Therefore, they represent samples of stars of constant age and/or constant chemical composition, suited for study with respect to stellar structure and evolution, and to fix lines or loci in many state diagrams such as the color-magnitude diagram (CMD), or Hertzsprung-Russel Idagram (HRD). Comparing the "standara" HRD , derived fro
nearby stars with sufficiently wellknown distances, or the theory of stellar evolution, with the measured CMD of star clusters, provides a considerably good method to determine the distance of star clusters. Comparing their HRD with stellar theory provides a reasonable way to estimate the age of star clusters. The result that all the cluster HRDs can be explained by the theory of stellar evolution gives convincing evidence for this theory, and moreover for the underlying physics including nuclear and tomic physics, quantum physics and thermodynamics.

Oer 100 open clusters are known in our Milky Way Galaxy, and this is probably only a small percentage of the total population which is probably some factor higher, estimates of as many as about 100,000 Milky Way open clusters have been given.
Most open clusters have only a short life as stellar swarms. As they drift along their orbits, some of their members escape the cluster, due to velocity changes in mutual closer encounters, tidal forces in the galactic gravitational field, and encounters with field stars and interstellar clouds crossing their way. An average open cluster has
spread most of its member stars along its path after several 100 million years; only few of them have an age counted by billions of years. The escaped individual stars continue to orbit the Galaxy on their own as field stars: All field stars in our and the external galaxies are thought to have their origin in clusters quite probably
The first open clusters have been known since prehistoric times: The Pleiades (M45), the Hyades and the Beehive or Prasepe (M44) are the most prominent examples, but Ptolemy had also mentioned M7 and the Coma Star Cluster (Mel 111) as early as 138 AD. First thought to be nebulae, it was Galieo who in 1609 discovered that they are composed of stars, when observing M44. As open clusters are often bright and easily observable with small telescopes, many of them have been discovered with the arriest telescopes: As seen in the list below, there are 27 in Messier's list, and 32 others were also known in summer 1782. Note that all these early known clusters belong to our Milky Way Galaxy

In 1767 , Reverend John Michell (Michell 1767) derived that clusters were most probable physically related groups rather than chance collections of stars, by calculating hat it would be extremely improbable (11496,000) to find even one cluster like the Pleiades anywhere in the sky, not to speak of the number of then-known open cluster moreover he presumed that all or at least most then-known nebulous objects actually were composed of stars. The finding of common proper motion by Mädler for the
Pleiades and other stellar groups, including the Ursa Maior Moving Cluster by Proctor (Proctor 1869) further established the physical relationship between cluster stars Finally, spectroscopy was needed to show the common radial motion (velocity) of the cluster stars, and to show that the stars perfectly match in a Hertzsprung-Russell diagram (HRD), indicating that they all lie at roughly the same distance. The final confirmation of the roughly common distance came only from the direct measurement of parallaxes for a number of nearby clusters, both from Earth-bound observatories and from ESA's astrometric satellite Hipparcos.
Eventually, the theoretical study of stellar evolution has provided convincing evidence that the stars of a cluster are all roughly of the same age, and thus have formed within a short period of time on the cosmic time scale, i.e. their HRDs represent isochrones, or pictures of stars of all the same age.

Open clusters are often typized according to a simple scheme which goes back to Harlow Shapley, which describes richness and concentration roughly:

very loose and irregular

loose and poor

intermediately rich
fairly rich
considerably rich and concentrated
Another important and more sophisticated scheme was introduced by R.J. Trumpler (Trumpler 1930). This scheme consists of three parts, characterizing the cluster's degree of concentration, the range of brightness of its stars, and the richness, as follows

Concentration
Detached; strong concentration toward center
Detached; weak concentration toward center
Detached; no concentration toward center
Not well deteached from surrounding star field
Range in Brightness
Small range in brightness
Moderate range in brightness
Large range in brightness
Richness
Poor: Less than 50 stars
Moderately rich: 50 to 100 stars
Rich: More than 100 stars
A " n " following the Trumpler class indicates that there is nebulosity associated with the cluster.

Messier's open clusters: $\underline{M 6}, \underline{M} 7, \underline{M 11}, \underline{M} 16, \underline{M} 18, \underline{M} 21, \underline{M} 23, \underline{M} 25, \underline{M} 26, \underline{M} 29, \underline{M} 34, \underline{M} 35, \underline{M} 36, \underline{M} 37, \underline{M} 38, \underline{M} 39, \underline{M} 41, \underline{M} 44, \underline{M} 45, \underline{M} 46, \underline{M} 47, \underline{M} 48, \underline{M} 50, \underline{M} 52$ M67, M93, M103.
Moreover, the Milky Way starcloud M24 contains the open star cluster NGC 6603, and all diffuse nebulae in Messier's catalog contain very young open clusters, still in he process of formation.
 242, 6530, 6633, 12391 (Omicron Vel), 12488, 12602, , I4665, Brocchi's Cluster (Cr 399), Alpha Persei Cluster (Mel 20), Hyades (Mel 25), Coma Sta Cluster (Mel 1111), Ursa Major Moving Cluster (Cr 285).

All the diffuse nebulae in Messier's catalog are associated with open clusters of young stars which have formed of the nebula's material in (astronomically) very recent times, and are still formed today in many cases.

Links

- WEBDA: A Site Devoted to Stellar Open Clusters, by Jean-Claude Mermilliod. Presentation - Cluster list
- A Simulation of Star Cluster Evolution
- Open Cluster Catalogs List; Catalog List (Mikkel Steine)
- ARVAL Catalog of Bright Open Clusters
- Open Clusters List and Star Clusters and Nebulae within 10000 light years map from An Atlas of The Universe - also note their Map of the Orion Arm within 2000 light years for nearby open clusters
- Also look at our collection of some significant non-Messier open clusters

References

- Woldemar Götz, Die offenen Sterrhaufen unserer Galaxis (The open star clusters of our Galaxy), Verlag Harri Deutsch, 1990
- John Michell, 1767. An Inquiry into the probable Parallax, and Magnitude, of the Fixed Stars, from the Quantity of Light which they afford us, and the particular Circumstances of their Situation. Philosophical Transactions, Vol. 57, p. 234-264.
- Roard A.. Pro Tris. Preliminary Paper on certain Drifting Motions of the Stars. Proceedings of the Roval Society of London, Vol. 18, p. 169-171.

Globular Cluster

Last Modification: 29 Mar 1998, 20:00 MET

Click icon to view a diffuse nebula from Messier's catalog
>> Messier's diffuse nebulae; Links

The icon shows reflection nebulae in Scorpius around Antares. The globular cluster at the lower right is $\underline{M} 4$.

Diffuse nebulae, sometimes inacurately referred to as gaseous nebulae, are clouds of interstellar matter, namely thin but widespread agglomerations of gas and dust. If they are large and massive enough they are frequently places of star formation, thus generating big associations or clusters of stars. Some of the young stars are often very massive and so hot that their high energy radiation can excite the gas of the nebula (mostly hydrogene) to shine; such nebula is called emission nebula. If the stars are not hot enough, their light is reflected by the dust and can be seen as white or bluish reflection nebula. Note that many emission nebulae also have an additional reflection nebula component (as they usually also contain dust); a most impressive example for this is the Trifid Nebula M20.

Diffuse emission nebulae are often called H II regions because they are mainly consisted of ionized hydrogene, H II - the roman number after the element symbol (here H) designating the ionization level: `I' would stand for neutral atoms, the `II' here means first ionization, i.e. the hydrogene atoms have lost their single electron, and for other elements higher numbers (ionization levels, or numbers of lost electrons) would be possible (e.g., He III, O III or Fe V).

After some million years, the gas and dust of the nebula will have been used up for forming stars (and planets), or blown away by the stellar winds of the young hot stars. A newly born open star cluster will remain. From the physical viewpoint, the nebulae are an early stage of evolution of star clusters.

The first diffuse nebula discovered was the Orion Nebula, M42, observed telescopically in 1610 by \underline{N}. Peiresc. The diffuse nebulae were longly be considered as distant, unresolved star clusters, or star clouds, until in the 1860s spectroscopy revealed their gaseous nature by showing line spectra, in particular due to the pioneering research of William Huggins. Eventually, in 1912, Vesto M. Slipher discovered that the nebulae in the Pleiades, M45, had the same spectra as the stars illuminating them, thus proving their nature as reflection nebulae. Of Messier's nebulae, $\underline{M} 78$ is the only pure reflection nebula, and the first of these objects to be discovered; its nature as a reflection nebula was revealed in 1919, again by V.M. Slipher.

While all of Messier's diffuse nebulae belong to our Milky Way galaxy, most other galaxies (especially all spiral and irregular galaxies) also contain such objects.

Messier's diffuse nebulae: $\underline{\mathrm{M} 8}, \underline{\mathrm{M} 17}, \underline{\mathrm{M} 20}, \underline{\mathrm{M} 42}, \underline{\mathrm{M} 43}, \underline{\mathrm{M} 78}$.

Moreover, open star cluster M16 (NGC 6611) is physically connected with the Eagle Nebula IC 4703, an H II region, and the Pleiades, M45, contain diffuse reflection nebulae.
Other early known diffuse nebulae: NGC 2070, NGC 3372.

Links

- Diffuse Nebulae Catalogs List
- ARVAL Catalog of Bright Nebulae (Diffuse and SNRs)
- Diffuse Nebulae list from An Atlas of the Universe
- Look at Diffuse Nebulae in Messier's Catalog
- Also look at our small collection of some significant diffuse nebulae not in Messier's catalog
- Interstellar Matter text (Scholar series at the MAA)

References

- James B. Kaler, Cosmic Clouds, Scientific American Library, W.H. Freeman, 1997 (German edition: Kosmische Wolken, 1998)

Supernova Remnants

Dark Nebulae

Hartmut Frommert
 Christine Kronberg
 [contact]

The Small Magellanic Cloud, SMC

Irregular Galaxy SMC, the Small Magellanic Cloud (NGC 292) in Tucana

Right Ascension	$00: 52.7$ (h:m)
Declination	$-72: 50(\mathrm{deg}: \mathrm{m})$
Distance	$210.0(\mathrm{kly})$
Visual Brightness	2.3 (mag)
Apparent Dimension	$280 \times 160(\operatorname{arc} \mathrm{~min})$

Known pre-historically on the Southern hemisphere. Probably mentioned by Amerigo Vespucci in 1503-4. Discovered by Magellan 1519.

Like its larger apparent neighbor, the Large Magellanic Cloud, the Small Magellanic Cloud was certainly known
 to the ancient southerners, and was probably mentioned by Amerigo Vespucci in a letter written during his third voyage about 1503-4, but became known to us only when Magellan went on his journey around the world, in 1519 . The main body of the Small Magellanic Cloud has been assigned NGC 292 in Dreyer's catalog, which is now sometimes used for this galaxy. In addition, many clusters and nebulae which are members of this galaxy have been given their own NGC numbers.

This galaxy looks like a piece of the Milky Way for the naked eye. It orbits our Milky Way galaxy at about 210,000 light years distance, which makes it the third-nearest external galaxy known (after the LMC and the 1994 discovered Sagittarius Dwarf Elliptical Galaxy). Our current distance value takes into account the corrected Cepheid distance scale based on the Hipparcos satellite data published in early 1997.

The SMC is of irregular type. It may be a distorted barred disk, deformed by the tidal gravitational forces of Milky Way and LMC, but this is not sure. It contains several nebulae and star clusters which can be seen in photographs and through telescopes.

Our small neighboring galaxy contains the same kinds of objects as our Milky Way, in particular open clusters, diffuse nebulae, supernova remnants, planetary nebulae, and one globular cluster, NGC 121. It is situated well outside the denser regions of the galaxy, slightly north but not far from the galactic foreground globular 47 Tucanae (NGC 104).

- Some prominent SMC objects

It was the Small Magellanic Cloud where Miss Henrietta Leavitt discovered the period-luminosity relation of Cepheid variables, which is since then the most reliable method available for determining large cosmic distances.

In John Caldwell's observing list. In the Astronomical League's Southern Sky Binocular Club list.

The image in this page was obtained by David Malin with the Anglo-Australian Telescope. This image is copyrighted and may be used for private purpose only. For any other kind of use, including internet mirroring and storing on CD-ROM, please contact the Photo Permissions Department of the Anglo Australian Observatory. The image also shows two remarkable foreground objects, globular clusters of our own Milky Way galaxy: Situated on the right is conspicuous 47 Tucanae (NGC 104), while in the left top is NGC 362. These are, of course, much closer to us than the galaxy.

- More information on this image by David Malin
- Multispectral Image Collection of the Small Magellanic Cloud, SIRTF Multiwavelength Messier Museum
- NED data of SMC
- SIMBAD Data of the Small Magellanic Cloud (NGC 292)
- Observing Reports for NGC 292, Small Magellanic Cloud - SMC (IAAC Netastrocatalog)

[^3]

Ophiuchus

- Download map

Messier Objects in Ophiuchus: $\underline{\text { M9 }}, \underline{\text { M10 }}, \underline{\text { M12 }}, \underline{\text { M14 }}, \underline{\text { M19 }}, \underline{\text { M62 }}, \underline{\text { M107 }}$

- Constellation index
- More on constellation Ophiuchus [MAA Original]
- More on Ophiuchus (Chris Dolan)
- Digital images - Constellation Ophiuchus page (T. Credner/S. Kohle) [unframed version]

Scorpius

- Download map

Messier Objects in Scorpius: M4, M6, M7, M80

- Constellation index
- More on constellation Scorpius [MAA Original]
- More on Scorpius (Chris Dolan)
- Digital images - Constellation Scorpius page (T. Credner/S. Kohle) [unframed version]

The disk of the Milky Way exhibits a spiral structure, which shows up in the distribution of the objects populating the disk component, i.e. population I stars and objects. These objects include, in particular, young stars, diffuse star-forming nebulae (H II regions) and open star clusters. Population I objects are very or rather young, in contrast to the very old population II objects of the Milky Way's Halo (globular clusters and old stars, including older planetary nebulae).

The origin of the spiral structure is thought to be in density waves which are triggered by gravitational disturbations, in particular during encounters with neighbor galaxies. The density waves first concern interstellar matter, which is compressed, forms diffuse nebulae which become starforming regions, and later form (open) cluster and associations of young stars, the most lumionous and conspicuous of which are massive, hot, blue and short-lived. Therefore, we see the most current density wave in the reddish H II regions, the elder next in the blueish clouds and associations of hot young stars, the next in age are characterized by type II (and Ib, Ic) supernova remnants and a bit older, less hot and blue open clusters. They can also be traced by the stars of the hotter spectral types, O, B, and A. The stars which are even older have remnants and a bit older, less hot and blue open clusters. They can also be traced by the stars of the hotter spectral types, O, B, and A . The stars which are even older
dissipated into a more diffuse background; this includes intermediate population I stars, older star clusters and the younger representatives of the planetary nebulae.

The arms of the Milky Way, at least near the solar neighborhood in our Galaxy, are typically named for the constellations where (in the direction of which) more substantial parts of them are situated.

Our solar system is situated (by chance) in a smaller spiral arm, called the Local or Orion Arm, sometimes labelled "0". This small or intermediate arm connects the more substantial next inner arm and the next outer arm. The next inner arm, sometimes labelled "-I", is called the Sagittarius or Sagittarius-Carina Arm, the next outer arm, labelled " +I ", is the Perseus Arm. At least one even outer arm, and two more inner arms have been identified.

A list of the Milky Way Spiral Arms follows, sorted from outside to inside near our solar neighborhood in the Galaxy:

- "+II", Outer Arm
- "+I", Perseus Arm
- "0", Local Arm, Orion Arm
- "-I", Sagittarius Arm, Sagittarius-Carina Arm
- "-II", Scutum-Crux Arm
- Norma Arm

These arms can be traced by deepsky objects, namely diffuse nebulae, open star clusters and associatons, (type II and Ib/Ic) supernova remnants, and main sequence stars of so-called "early" (hot) spectral types.

Perseus Arm

Object Con Type RA (2000) Dec dist

M 52	NGC	7654	Cas	OC	$23: 24.2+61: 35$	5.0	
M103	NGC	581	Cas	OC	$01: 33.2+60: 42$	8.0	
		NGC	869	Per	OC	$02: 19.0+57: 09$	7.1
		NGC	884	Per	OC	$02: 22.4+57: 07$	7.4
M $38 *$	NGC 1912	Aur	OC	$05: 28.4+35: 50$	4.2		
M $1 *$	NGC 1952	Tau	SNR	$05: 34.5+22: 01$	6.3		
M $36 *$	NGC 1960	Aur	OC	$05: 36.1+34: 08$	4.1		
M $37 *$	NGC 2099	Aur	OC	$05: 52.4+32: 33$	4.4		

Orion Arm
Object Con Type RA (2000) Dec dist

M	6	NGC	6405	Sco	OC	17:40.1	-32:13	2
M	7	NGC	6475	Sco	OC	17:53.9	-34:49	0.8
M	23	NGC	6494	Sgr	OC	17:56.8	-19:01	2.15
M	25	IC	4725	Sgr	OC	18:31.6	-19:15	2
M	57	NGC	6720	Lyr	PN	18:53.6	+33:02	2.3
M	27	NGC	6853	Vul	PN	19:59.6	+22:43	1.25
M	29	NGC	6913	Cyg	OC	20:23.9	+38:32	4.0
M	73	NGC	6994	Aqr	OC?	20:58.9	-12:38	2.0
M	39	NGC	7092	Cyg	OC	21:32.2	+48:26	0.825
M	76	NGC	650	Per	PN	01:42.4	+51:34	3.4
M	34	NGC	1039	Per	OC	02:42.0	+42:47	1.4
M	45			Tau	C+N	03:47.0	+24:07	0.38
M	42	NGC	1976	Ori	DN	05:35.4	-05:27	1.6
M	43	NGC	1982	Ori	DN	05:35.6	-05:16	1.6
M	78	NGC	2068	Ori	DN	05:46.7	+00:03	1.6
M	35	NGC	2168	Gem	OC	06:08.9	+24:20	2.8
M	41	NGC	2287	CMa	OC	06:46.0	-20:44	2.3
M	50	NGC	2323	Mon	OC	07:03.2	-08:20	3
M	47	NGC	2422	Pup	OC	07:36.6	-14:30	1.6
M	46	NGC	2437	Pup	OC	07:41.8	-14:49	5.4
M	93	NGC	2447	Pup	OC	07:44.6	-23:52	3.6
M	48	NGC	2548	Hya	OC	08:13.8	-05:48	1.5
M	44	NGC	2632	Cnc	OC	08:40.1	+19:59	0.577
M	67	NGC	2682	Cnc	OC	08:50.4	+11:49	2.7
M	97	NGC	3587	UMa	PN	11:14.8	+55:01	2.6
M	40			UMa	DS	12:22.4	+58:05	0.51

Sagittarius Arm
Object Con Type RA (2000) Dec dist

M	20	NGC	6514	Sgr	DN	18:02.6	-23:02	5.2
M	8	NGC	6523	Sgr	DN	18:03.8	-24:23	. 2
M	21	NGC	6531	Sgr	OC	18:04.6	-22:30	4.25
M	24	IC	4715?	Sgr	MWP	18:16.9	-18:29	10-15
		NGC	6603	Sgr	OC	18:18.4	-18:25	10
M	16	NGC	6611	Ser	C/N	18:18.8	-13:47	7
M	18	NGC	6613	Sgr	OC	18:19.9	-17:08	4.9
M	17	NGC	6618	Sgr	DN	18:20.8	-16:11	5
M	26	NGC	6694	Sct	OC	18:45.2	-09:24	5
M	11	NGC	6705	Sct	OC	18:51.1	-06:16	6

Notes:

- "*": Listed as in the Orion Arm in

References:

Hartmut Frommert
 Christine Kronberg

[contact]

Supernovae observed in the Milky Way: Historical Supernovae

Similar to other galaxies (including the Messier galaxies), there occur supernovae in our Milky Way at irregular intervals of time.

If they are not too heavily obscurred by interstellar matter, they can be seen as very spectacular events in the sky. Unfortunately, though, none of them has been well visible since the invention of the telescope, although modern estimates predict that every few decades one supernova should occur in a galaxy like the Milky Way.

Here we list the supernovae (sometimes only candidates, indicated by question marks) which have been recorded through the history of humanity

Key: Year/Date: Time of observation/occurrance, Con: Constellation, mag: estimated apparent magnitude in brightness maximum, Remnant: Identification of the supernova remnant

Restricting to the more or less safe supernova events, this table reduces significantly, most probably because of poor recording of our ancestors, to only 8 supernovae, one of which (185 AD) was even questioned recently:

Key: Year/Date: Time of observation/occurrance, Con: Constellation, RA/Dec: Right Ascension and Declination (2000.0) mag: estimated apparent magnitude in brightness maximum

Even for the 185 AD event, doubts have been brought up on its nature as a supernova (Y.-N. Chin and Y.-L. Huang 1994, "Identification of the Guest Star of AD 185 as a Comet Rather than a Supernova", Nature 371, 398).

A notable event with some similarity to a supernova occurred with the star Eta Carinae in 1843 , when it brightened to mag -0.8 and became the second brightest star in the heavens after Sirius, although it is at the great distance of 10,000 light years.

Only two supernovae have been discovered in other galaxies of the Local Group: SN 1885 or S Andromedae in the Andromeda Galaxy M31, and SN 1987A in the Large Magellanic Cloud.

Links:

- Michael Richmond's Information on the historical supernovae
- Historical Records of Supernovae (Cornell Univ., Astro 201) [Lists also SN 386 AD]

References:

The Historical Supernovae, by D.H. Clark and F.R. Stephenson, Pergamon Press, 1977

- Historical Supernovae, by F.R. Stephenson and D.H. Clark, Scientific American, Vol. 234, June 1976, p. 100-107
F. Richard Stephenson and David A. Green, 2003. A Millennium of Shattered Stars - Our Galaxy's Historical Supernovae. Sky and Telescope, Vol. 105, No. 5 (May 2003), p. 40-48.
- Please report me any errors, remarks and comments related to this list!

Hartmut Frommert
 Christine Kronberg
 contact]

* Number of large galaxies within 5 million light years $=3$
* Number of dwarf galaxies within 5 million light years $=37$

米 Number of stars within 5 million light years $=700$ billion

About the Map

The Milky Way is one of three large galaxies belonging to the group of galaxies called the Local Group which also contains several dozen dwarf galaxies. Most of these galaxies are depicted on the map, although most dwarf galaxies are so faint, that there are probably several more waiting to be discovered.

Some of the galaxies in the Local Group

Shown below are four of the galaxies in the Local Group. The Triangulum galaxy (left) is a spiral galaxy and the third largest galaxy in the local group, it contains 50 billion stars. NGC 147 (top centre) is a dwarf elliptical galaxy and IC 10 (top right) is a dwarf irregular galaxy, they both contain tens of millions of stars. NGC 3109 (bottom right) is another dwarf irregular galaxy of several hundred million stars and it is also the largest member of a small sub-group of galaxies within the Local Group.

Nearby Dwarf Galaxy Leo I

Credit: Anglo-Australian Telescope photograph by David Malin
Copyright: Anglo-Australian Telescope Board
Explanation: Leo I is a dwarf spheroidal galaxy in the Local Group of galaxies dominated by our Milky Way Galaxy and M31. Leo I is thought to be the most distant of the eleven known small satellite galaxies orbiting our Milky Way Galaxy. Besides the LMC and the SMC, all Milky Way satellite galaxies are small, dim, dwarf spheroidals, including the closest galaxy - the Sagittarius Dwarf. Leo I is most distant than most of them, thought to be about 250 kpc away. Analysis of stars in Leo I show it contains many stars only about 3 billion years old - much younger than in most galaxies.

Age of the Universe

There are at least 3 ways that the age of the Universe can be estimated. I will describe

- The age of the chemical elements.
- The age of the oldest star clusters.
- The age of the oldest white dwarf stars.

The age of the Universe can also be estimated from a cosmological model based on the Hubble constant and the densities of matter and dark energy. This model-based age is currently $13.7+/-0.2$ Gyr. But this Web page will only deal with actual age measurements, not estimates from cosmological models. The actual age measurements are consistent with the model-based age which increases our confidence in the Big Bang model.

The Age of the Elements

The age of the chemical elements can be estimated using radioactive decay to determine how old a given mixture of atoms is. The most definite ages that can be determined this way are ages since the solidification of rock samples. When a rock solidifies, the chemical elements often get separated into different crystalline grains in the rock. For example, sodium and calcium are both common elements, but their chemical behaviours are quite different, so one usually finds sodium and calcium in different grains in a differentiated rock. Rubidium and strontium are heavier elements that behave chemically much like sodium and calcium. Thus rubidium and strontium are usually found in different grains in a rock. But $\mathrm{Rb}-87$ decays into $\mathrm{Sr}-87$ with a half-life of 47 billion years. And there is another isotope of strontium, $\mathrm{Sr}-86$, which is not produced by any rubidium decay. The isotope $\mathrm{Sr}-87$ is called radiogenic, because it can be produced by radioactive decay, while $\mathrm{Sr}-86$ is non-radiogenic. $\mathrm{The} \mathrm{Sr}-86$ is used to determine what fraction of the $\mathrm{Sr}-87$ was produced by radioactive decay. This is done by plotting the $\mathrm{Sr}-87 / \mathrm{Sr}-86$ ratio versus the $\mathrm{Rb}-87 / \mathrm{Sr}-86$ ratio. When a rock is first formed, the different grains have a wide range of $\mathrm{Rb}-87 / \mathrm{Sr}-86$ ratios, but the $\mathrm{Sr}-87 / \mathrm{Sr}-86$ ratio is the same in all grains because the chemical processes leading to differentiated grains do not separate isotopes. After the rock has been solid for several billion years, a fraction of the Rb-87 will have decayed into Sr-87. Then the Sr-87/ $\mathrm{Sr}-86$ ratio will be larger in grains with a large $\mathrm{Rb}-87 / \mathrm{Sr}-86$ ratio. Do a linear fit of
$\mathrm{Sr}-87 / \mathrm{Sr}-86=\mathrm{a}+\mathrm{b}$ *(Rb-87/Sr-86)
and then the slope term is given by
$\mathrm{b}=2^{\mathrm{x}}-1$
with x being the number of half-lives that the rock has been solid. See the talk.origins isochrone FAQ for more on radioactive dating
When applied to rocks on the surface of the Earth, the oldest rocks are about 3.8 billion years old. When applied to meteorites, the oldest are 4.56 billion years old. This very well determined age is the age of the Solar System. See the talk.origins age of the Earth FAQ for more on the age of the solar system.

When applied to a mixed together and evolving system like the gas in the Milky Way, no great precision is possible. One problem is that there is no chemical separation into grains of different crystals, so the absolute values of the isotope ratios have to be used instead of the slopes of a linear fit. This requires that we know precisely how much of each isotope was originally present, so an accurate model for element production is needed. One isotope pair that has been used is rhenium and osmium: in particular Re-187 which decays into Os-187 with a half-life of 40 billion years. It looks like 15% of the original Re-187 has decayed, which leads to an age of $8-11$ billion years. But this is just the mean formation age of the stuff in the Solar System, and no rhenium or osmium has been made for the last 4.56 billion years. Thus to use this age to determine the age of the Universe, a model of when the elements were made is needed. If all the elements were made in a burst soon after the Big Bang, then the age of the Universe would be $t_{0}=8-11$ billion years. But if the elements are made continuously at a constant rate, then the mean age of stuff in the Solar System is
$\left(t_{\circ}+t_{S S}\right) / 2=8-11$ Gyr
which we can solve for the age of the Universe giving
$t_{0}=11.5-17.5$ Gyr

Radioactive Dating of an Old Star

A very interesting paper by Cowan et al. (1997, ApJ, 480, 246) discusses the thorium abundance in an old halo star. Normally it is not possible to measure the abundance of radioactive isotopes in other stars because the lines are too weak. But in CS 22892-052 the thorium lines can be seen because the iron lines are very weak. The $\mathrm{Th} / \mathrm{Eu}$ (Europium) ratio in this star is 0.219 compared to 0.369 in the Solar System now. Thorium decays with a half-life of 14.05 Gyr , so the Solar System formed with $\mathrm{Th} / \mathrm{Eu}=$ $2^{4.6 / 14.05 *} 0.369=0.463$. If CS $22892-052$ formed with the same $\mathrm{Th} / \mathrm{Eu}$ ratio it is then $15.2+/-3.5 \mathrm{Gyr}$ old. It is actually probably slightly older because some of the thorium that would have gone into the Solar System decayed before the Sun formed, and this correction depends on the nucleosynthesis history of the Milky Way. Nonetheless, this is still an interesting measure of the age of the oldest stars that is independent of the main-sequence lifetime method.

A later paper by Cowan et al. (1999, ApJ, 521, 194) gives 15.6 +/- 4.6 Gyr for the age based on two stars: CS 22892-052 and HD 115444.
A another star, CS 31082-001, shows an age of 12.5 +/- 3 Gyr based on the decay of U-238 [Cayrel, et al. 2001, Nature, 409, 691-692]. Wanajo et al. refine the predicted $\mathrm{U} /$ Th production ratio and get $14.1+/-2.5 \mathrm{Gyr}$ for the age of this star.

The Age of the Oldest Star Clusters

When stars are burning hydrogen to helium in their cores, they fall on a single curve in the luminosity-temperature plot known as the H - R diagram after its inventors, Hertzsprung and Russell. This track is known as the main sequence, since most stars are found there. Since the luminosity of a star varies like M^{3} or M^{4}, the lifetime of a star on the main sequence varies like $t=c o n s t * M / L=k / L^{0.7}$. Thus if you measure the luminosity of the most luminous star on the main sequence, you get an upper limit for the age of the cluster:

Age < k/L(MS_max) 0.7
This is an upper limit because the absence of stars brighter than the observed L(MS_max) could be due to no stars being formed in the appropriate mass range. But for clusters with thousands of members, such a gap in the mass function is very unlikely, the age is equal to k/L(MS_max) ${ }^{0.7}$. Chaboyer, Demarque, Kernan and Krauss (1996, Science, 271,957) apply this technique to globular clusters and find that the age of the Universe is greater than 12.07 Gyr with 95% confidence. They say the age is proportional to one over the luminosity of the RR Lyra stars which are used to determine the distances to globular clusters. Chaboyer (1997) gives a best estimate of 14.6 +/-1.7 Gyr for the age of the globular clusters. But recent Hipparcos results show that the globular clusters are further away than previously thought, so their stars are more luminous. Gratton et al. give ages between 8.5 and 13.3 Gyr with 12.1 being most likely, while Reid gives ages between 11 and 13 Gyr , and Chaboyer et al. give $11.5+/-1.3 \mathrm{Gyr}$ for the mean age of the oldest globular clusters.

The Age of the Oldest White Dwarfs

A white dwarf star is an object that is about as heavy as the Sun but only the radius of the Earth. The average density of a white dwarf is a million times denser than water White dwarf stars form in the centers of red giant stars, but are not visible until the envelope of the red giant is ejected into space. When this happens the ultraviolet radiation from the very hot stellar core ionizes the gas and produces a planetary nebula. The envelope of the star continues to move away from the central core, and eventually the planetary nebula fades to invisibility, leaving just the very hot core which is now a white dwarf. White dwarf stars glow just from residual heat. The oldest white dwarfs will be the coldest and thus the faintest. By searching for faint white dwarfs, one can estimate the length of time the oldest white dwarfs have been cooling. Oswalt, Smith, Wood and Hintzen (1996, Nature, 382, 692) have done this and get an age of 9.5+1.1-0.8 Gyr for the disk of the Milky Way. They estimate an age of the Universe which is at least 2 Gyr older than the disk, so $t_{o}>11.5 \mathrm{Gyr}$.

Hansen et al. have used the HST to measure the ages of white dwarfs in the globular cluster M4, obtaining $12.7+/-0.7$ Gyr. In 2004 Hansen et al. updated their analysis to give an age for M4 of $12.1+/-0.9 \mathrm{Gyr}$, which is very consistent with the age of globular clusters from the main sequence turnoff. Allowing allowing for the time between the Big Bang and the formation of globular clusters (and its uncertainty) implies an age for the Universe of $12.8+/-1.1$ Gyr.

Glossary of Astronomical and Cosmological Terms

> Tutorial: Part 1 | Part 2 | Part $3 \mid$ Part 4 EAQ | Age | Distances | Bibliography | Relativivity
angles: are measured in degrees or areminutes (denoted by a single quote) or arcseconds (denoted by a double quote) or radians. 1 radian $=180 / \mathrm{pi}=57.2958$ degrees, angles: are measured in degres or arcminutes (denoted by as
degree $=10=60$ arcminues $=60^{\circ}=3600$ arcseconds $=3600$ ",
baryon: a massive elementary particle made up of three quarks. Neutrons and protons are baryons.
blackbody: an object with a constant temperature that absorbs all radiation that hits it.
Cepheid: a type of pulsating variable star with a luminosity that can be determined from the period of its variation: Cepheids with long pulsation periods are bigger and thus more luminous than short period Cepheids.
cold dark matter: a type of dark mater that was moving at much less than the speed of light 10,000 years after the Big Bang. (see dark mater)
continuum: a smooth spectrum without emission or absorption lines. Some sources like tungsten lamps or blackbodies are purely continuum sources, while in sources
with lines the continum is a smooth spectrum drawn trough the points between the lines. with lines the continuum is a smooth spectrum drawn through the points between the lines.
CMB: Cosmic Microwave Background radiaition, also CMBR, CBR and the " 3 K blackbody radiation". Radiation left ver from the hot Big Bang which has cooled by
expansion to a temperature slighty less than 3 degres above absolute cero. cosmological constant: a term in Einstein's general relativity equations that lead to an acceleration of the expansion of the Universe. Usually denoted by the capital
Greek leter Lambda when expressed with units of inverse engsth squared, or by the lower-case Greek lambda when normairize to the critical density like Omega.

ark matter: a form of matter that does not emit light, absorb light, or scatter light. Its only interactions are gravitational
density: the amount of mater in a volume divided by the volume, so the unis are grams per cubic centimeter. Water has a density of 1 gram per cubic centimeter. The
lower case Greek leter rho is usually ysed the symbolize density in equations. dipole: a patern with one hot side of the sky and one cold side of the sky.
Doppler: 19ht century physicist who discovered the variation in the wavelength of waves caused by motion of the source.
electromagnetic force: onn of the four forces of nature. Electromagnetic interactions hold electrons in atoms, hold atoms in molecules, and are used in all electronic
devices. electroweak:
van der Meer.
emission line: a more or less narrow range of wavelengths in a spectrum that is brighter than neighboring wavelengths. Emission lines are seen in quasars.
energy: the abiity to do work, with units of erpsg or Joules. One Joule is $10,000,000$ ergs. One erg is the kinetic energy of a 2 gram mass moving at one cm/sec. Energy per
unit time is power, and 1 Watt of power is 1 Joule per second.
 $2 * \mathrm{p}$, and c is the speed of light.
flux: power per unit area. The flux from the Sun at the Earth is 1367 Watts per square meter. This total power is often divided up into different frequency or wavelength flux: power per unit area. The flux from the Sun at the Earth is 1367 Watts per square meter. This total power is often divided up into different frequency or w
bands, giving for example Watts per square meter per Hertz or ergs per square cm per second per micron. 1 I Jansky is 10^{-26} Watts per square meter per Hertz. fluence: energy per unit reea. Fluence is time times flux.
gamma ray: a very high energy photon, more energetic than an X -ray.
Gyr: gigayear, or one billion years. See for table of all the metric prefixes from yocto $\left(10^{-24}\right)$ to yota ($10{ }^{24}$).
grand unified theory: a model for unifying the strong nuclear force, the weak nuclear force, and the electromagnetic force into a single interaction. Several such GUTs
have been proposed, but not yet experimentally verified.
gravitational potential the gravitational energy per unit mass of a particle, equivalen to the acceleration of gravity times the height in ordinary circumstances on the
sufface of the Earth.
homogeneous: the same at all locations. Homgenized milk is not separated into cream and milk.
horizon: the edge of the visible Universe, but not the edge of the Universe since the Universe has no edge.
Hot Big Bang: A model of the Universe beginning at very high density and temperature, which expands and cools to become like the Universe we observe now
hot dark matter: A type of dark matter that was moving at close to the speed of light 10,000 years after the Big Bang. (see dark matter)
Hubble constant: or H_{0}, the ratio of velocity to distance in the expansion of the Universe, so $\mathrm{V}=\mathrm{HD}$. The "o" [pronounced "naught"] on H_{0} means the current value, since
the Huble c constant" changes with time (but it is the enmeryen the Hubble "constant" changes with time (butit is the same everywhere in the Universe at a given time). The measured value of H_{0} has also changed dramatically since even before Hubbles work, as shown in Huchra's H_{2} history.
inflationary scenario. a modification of the Big Bang model in which a large cosmological constant exists temporarily early in the history of the Big Bang, leading to a
rapid accelerating expansion of the Universe, which is then followed by the normal Big Bang model with a dececerating expansion. istropic: the same in all directions. Anisotropic - not isotropic. Anisotropy - difference between different directions. 1 .
maps measured by the COBE DMR, red shows areas of the sky that are warmer, while blue shows the coler regions.
Lambda: the upper case Greek Lambda is usually used to denote Einstein's cosmological constant. A non-zero Lambda indicates a non-erero vacuum energy density and causes a long-range repulsive effect which leads to the accelerating expansion of the Universe.
Lyman alpha line: the strongest line in the spectrum of the most common atom in the Universe, hydrogen. It is emited at a wavelength of 122 nm . The general formula
for the wavelength of hydrogen lines is
where $n=1,2,3, \ldots$, is the lower state quantum number and $m=n+1, n+2, .$. is the upper state quantum number. When $n=1$, , these lines with $m=2,3, \ldots$ are called
Lyman alpha, Lyman beta,,\ldots and form hhe Lyman series. When $n=2$, these lines wiph $m=3,4, \ldots$ are called H-alpha, H H-beta, \ldots and form the Balmer series. MACHO: MAssive Compact Halo Object, and also one of projects searching for MACHOs by looking for ravitational microlensing: the other projects are EROS and
 primordial black holes are a non-baryyonic dark mater version of MACHOs.
magnitude: a scale used by astronomers to measure flux. Each 5 units on the magnitude scale corresponds to a 100 -fold decrease in the flux. The Sun has magnitude. 2.5. Sirius, the brightest star in the night sky, has magnitude -1.6 . The faintest stars visible with the naked eye have magnitude 6 .
micron: ine micrometer, 0.000001 meters. Visible light has wavelengghs between 0.4 and 0.7 microns. 1 micron is 10,000 Angstroms, or 1000 nanometers (nm). nanowatt or nW: one billion'th of a watt.
neutralino: a particle predicted by supersymmerty models of the forces of nature. These models predict that each type of known particle will have a supersymmertic
partuer. The neutralino is she lightestelectrically neutral supersymmertic partner, and it is a candidate for cold dark mater. As of 1999 , no supersymmetric pattner paricicle of any kind have been observed experimentally. A neutralino is one type of WIMP.
non-baryonic: not made up of neutrons, protons and electrons, and thus not like any of the known chemical elements.
Nucleon: a neutron or a proton - one of the particles inside an atomic nucleus.
Omega: the ratio of the density of the Universe to the critical density.
 the critical density is $3^{*} \mathrm{H}_{0} / 2 / 8^{*} \mathrm{p} \mathrm{p}^{*} \mathrm{G}$], this combination is just proportional to the physical density. omega=1 correspond to $19^{* *} 0^{-30} \mathrm{gm} / \mathrm{cc}$, or in $\mathrm{S}: 19$ yoctograms per cubic meter.
parsec: a unit of distance sed by astronomers, corresponding to a parallax of one arc-second. Equal to 3.085678×1013 kilometers, or 3.26 light-years. kpe: 1000 parsecs
QSO: quasi-stellar object. The first discovered QSO's were radio sources, leading to the name quasi-stellar radio sources, or QSRSS, or quasars. These objects look like stars on an inage of the sky, but the
luminous objects in the Universe.
quadrupole: a type of pattern on the sky which generally has two high spots and two low spots
quark: An elementry, strongly interacting constiutunt of mater. Quarks come in sis flavorss. up, down, charm, strange, top and bottom. The up, charm and top quarks
have electric charges of $+2 / 2 / 3)$, while the down, strange and botom quarks have charges of $-(1 / 3)$. The proton which has a charge of + is constructed of two up quarks and one down quark: (uud), while the neutron is (udd).
redshift: the Dopples shiff for obiects receding from the Earth causes the wavelength of light to get longer, and hence shift into the red part of the spectrum. Because of e expansion of he Universe, objects with high redshift are far away, and we see them as they were a long time ago
spectrum. result of spreading out light by wavelengths. A rainbow is a natural spectrum. The eye is sensitive to waves from violet at 380 nm wavelength to red at 700 nm
wavelenght, but asstronomers now study electromagnetic radiation from gamma rays through X-rays, ultraviolet, violet, blue, green, yellow, range, red, infrared and radio wavelen
waves.
Steady State: a model of the expanding Universe with constant density and physical properties. Matter must be continually created to maintain the constant density
steradian: the unit of solid angle. There are 4 "pi steradians in the entire celestial sphere. One square degree is $(1 / 57.3)$ steradians because one degree is $(1 / 57.3)$ radians strong nuclear force: one of the four forces of nature. The strong nuclear force holds the particles in the nucleus of atoms together.
time dilation: in special relativity, moving clocks appear to run slowly when compared to stationary clocks. This clock slowing is called time dilation.
vacuum energy density: Ouantum theory requires empty space to be filled with particles and anti-particles being continually created and annibiliated. This could lead to a
net density of the vacuum, which if present, would behave like a cosmological constant. weak nuclear force: one of the four forces of nature. The weak nuclear force is responsible for radioactive decay as well as the fusion reactions in the Sun that provide
heat and light oro the Earth. WIMP: a Weakly Interacing Massive Particle, a possible form for cold dark matter. ero point energy: the uncertainty principle does not allow a quantum mechanical system to have a definite position and definite velocity at the same time. Thus a

Groups and Clusters of Galaxies with Messier objects

Galaxies are usually members of groups or clusters, and those listed in Messier's catalog are no exceptions. Below please find those groups containing Messier galaxies.

Groups of Galaxies containing at least two Messier objects

Ordered roughly by Right Ascension.
Local Group of Galaxies
Messier objects: The Andromeda Galaxy M31 and its satellites M32 and M110, as well as the Triangulum galaxy M33. Other members (over 30 in all) include our Milky Way Galaxy, the Large and the Small Magellanic Cloud (LMC and SMC), as well as several smaller galaxies. It is also somehow associated with the group around the large elliptical Maffeil.

M81 group

Messier objects: $\underline{M 81}$ and $\underline{\text { M82 }}$. This group is very nearby, only some 11 million light-years distant. Other members include $\underline{\text { NGC } 3077}$ and $\underline{\text { NGC 2976, an }}$ outlying member of the group is NGC 2403.

M96 group (Leo I group)

Messier objects: M95, M96, M105. There are many more galaxies in this group, including NGC 3384 in the same field as M105.
Leo triplett (M66 group)

Ursa Major Cloud

Messier objects (probable members): M108, M109. A large and vast cloud of galaxies of at least 79 member galaxies.
Virgo Cluster of Galaxies (or Coma-Virgo Cluster)
Messier objects: $\underline{M 49}, \underline{M} 58, \underline{M} 59, \underline{M} 60, \underline{M} 61, \underline{M} 84, \underline{M} 85, \underline{M} 86, \underline{M} 87, \underline{M} 88, \underline{M} 89, \underline{M} 90, \underline{M} 91, \underline{M} 98, \underline{M} 99$, and M100. The Virgo Cluster with its some 2000 member galaxies dominates our intergalactic neighborhood, as it represents the physical center of our Local Supercluster, and influences all the galaxies and galaxy groups by the gravitational attraction of its enormous mass. Our Local Group has experienced a speed-up of $100 . .400 \mathrm{~km} / \mathrm{sec}$ towards this cluster (the Virgo-centric flow), and it is still unclear if at one time it will fall and merge into the cluster. HST observations of Cepheids in M100, together with the work of Nial R. Tanvir on the M96 group extrapolated to this cluster, indicate that the Virgo cluster is at a distance of some 60 million light-years.

M51 group

Messier objects: M51, M63.
M94 Group, CVn I Cloud
Messier objects: M64, M94. This vast and loose group or cloud of galaxies is listed by various sources but not in R. Brent Tully's Nearby Galaxies Catalog.

Further Messier galaxies contained in groups

The following list contains the Messier galaxies which are members of groups but not listed above; usually, some info on the corresponding groups is included in the object pages for these galaxies. It is ordered roughly by Right Ascension again.

- M74 is probably the chief member of a small physical group of galaxies (the M74 group)
- M77 is the dominating member of a small but remarkable group of galaxies, the M77 group (sometimes also called the NGC 1068 group).
- M106 is the brightest member of the Canes Venatici II (CVn II) group or M106 group of galaxies
- M104 is the dominating member of a small group called the M104 group or NGC 4594 group of galaxies.
- M83 forms the M83 group together with some conspicuous but quite southern galaxies, including Centaurus A (NGC 5128) and the unusual galaxy NGC 5253 . This group is sometimes also referred to as Centaurus A group or NGC 5128 group.
- M101 forms the M101 group of at least 9 galaxies with several faint companions. Some sources suppose some physical connection with the M51 group but this is doubtful.
- The M102 candidate NGC 5866 is the brightest member of a conspicuous group of galaxies in Draco, the NGC 5866 group, which contains (besides NGC 5866) the bright edge-on spiral NGC 5907, NGC 5879, and a lot of fainter galaxies.

Links:

- A List of Nearby Galaxy Groups and The major Groups and Clusters of Galaxies within 200 million ly from An Atlas of the Universe

[^4]

Groups and Clusters of Galaxies

Click icon for an index of galaxy groups and clusters containing galaxies of Messier's catalog
Our icon shows a region near the center of the Virgo Cluster of galaxies, near the large lenticulars M84 and M86.

Galaxies do not usually occur as isolated "island universes" in space which which float lonely through an otherwise empty universe, but normally form groups of several individuals, in a wide range from few or few dozens of galaxies to large clusters of up to several thousands. The galaxies of these groups are in mutual gravitational interaction which may have significant influence on their appearance.

Messier's galaxies are no exceptions, but in virtually all cases members of groups and clusters of galaxies; moreover, Messier had even discovered the nearest big cluster of galaxies, the Virgo Cluster, although at his time, the nature of galaxies was not recognized; thus he wrote of a concentration of nebulae, of which he had cataloged 16 . This huge agglomeration contains several dozens of large and thousands of small galaxies.

Our own galaxy, the Milky Way, is also a member of a smaller group of galaxies, the Local Group, which contains three large and over 30 small galaxies. Together with most nearby galaxy groups (and field galaxies), the Local Group is part of the so-called Local or Virgo Supercluster, which is dominated by the big Virgo Cluster.

Big clusters like Virgo have a tendency to attract and finally incorporate the small groups and individual galaxies in their immediate neighborhood as time goes by. Besides accumulating mass, the cluster also grows in volume because of the following process: The incoming galaxies are accelerated by the cluster's gravity, and fall in with high velocities. Having reached the cluster, they transfer their kinetic energy during encounters to member galaxies, and thus "heat" the cluster. Like a gas, the heated cluster expands to a larger volume.

It is not yet clear if our Local Group will at one time be "eaten" by the Virgo cluster.

Links

- Galaxy Cluster optical and x-ray images (White, U. Alabama)
- Galaxy Cluster Catalogs List
- The Abell Catalogue of Clusters of Galaxies is available online thanks to Mikkel Steine
- Groups and Clusters of Galaxies containing Messier Objects
- Look at our collection of other significant clusters and groups of galaxies

Hartmut Frommert

Christine Kronberg
[contact]

The Virgo Cluster of Galaxies

Also: Coma-Virgo cluster of Galaxies

This giant agglomeration of galaxies is the nearest big cluster of galaxies, the largest proven structure in our intergalactic neighborhood, and the most remote cosmic objects with a physical connection to our own small group of galaxies, the Local Group, including our Milky Way galaxy. This structure is another discovery by Charles Messier, who noted behind his entry for M91 (here quoted from Kenneth Glyn Jones' book):
"The constellation Virgo and especially the northern wing is one of the constellations which encloses the most nebulae. This catalog contains 13 which have been determined, viz. Nos. 49, 58, 59, 60, 61, 84, 85, 86, 87, 88, 89, 90 and 91 . All these nebulae appear to be without stars and can be seen only in a good sky and near meridian passage. Most of these nebulae have been pointed out to me by M. Méchain."

Together with his later entries, 98,99 , and 100 , Messier had cataloged 16 members of the Virgo cluster which he viewed as a 'cluster of nebulae'. Pierre Méchain, in a letter of 1783, stated that he had seen even more "Nebulae" in this region which "Messier had not seen;" unfortunately, no records are known indicating which galaxies this may have been.

Our image shows a star chart drawn by Messier, cropped from a larger chart he published with his observations of the comet of 1779 (all 16 Messier objects are marked in this drawing). This discovery occured in 1781, significantly more than a century before the true nature of galaxies was realized in the 1920s ! A long history of exploration still had to pass until its nature as a physical cluster of galaxies became obvious.

Messier galaxies which are Virgo cluster members: $\underline{\mathrm{M} 49}, \underline{\mathrm{M} 58}, \underline{\mathrm{M} 59}, \underline{\mathrm{M} 60}, \underline{\mathrm{M} 61}, \underline{\mathrm{M} 84}, \underline{\mathrm{M} 85}, \underline{\mathrm{M} 86}, \underline{\mathrm{M} 87}, \underline{\mathrm{M} 88}, \underline{\mathrm{M} 89}, \underline{\mathrm{M} 90}, \underline{\mathrm{M} 91}, \underline{\mathrm{M} 98}, \underline{\mathrm{M} 99}$, and $\underline{\mathrm{M} 100}$.
The Virgo Cluster with its some 2000 member galaxies dominates our intergalactic neighborhood, as it represents the physical center of our Local Supercluster (also called Virgo or Coma-Virgo Supercluster), and influences all the galaxies and galaxy groups by the gravitational attraction of its enormous mass. It has slowed down the escape velocities (due to cosmic expansion, the 'Hubble effect') of all the galaxies and galaxy groups around it, thus causing an effective matter flow towards itself (the so-called Virgo-centric flow). Eventually many of these galaxies have fallen, or will fall in the future, into this giant cluster which will increase in size due to this effect. Our Local Group has experienced a speed-up of $100.400 \mathrm{~km} / \mathrm{sec}$ towards the Virgo cluster. Current data on the mass and velocity of the Virgo cluster indicate that the Local Group is probably not off far enough to escape, so that its recession from Virgo will probably be halted at one time, and then it will fall and merge into, or be eaten by the cluster, see our Virgo Cluster \& Local Group page.

Because of the Virgo Cluster's enormous mass, its strong gravity accelerates the member galaxies to considerably high peculiar velocities, up to over $1500 \mathrm{~km} / \mathrm{sec}$, with respect to the cluster's center of mass. Investigations over the past decad have revealed a quite complex dynamic structure of this huge irregular aggregate of galaxies. The Virgo cluster is close enough that some of its galaxies, which happen to move fast through the cluster in our direction, exhibit the highest blueshifts (instead of cosmological redshifts) measured for any galaxies, i.e. are moving toward us: The record stands for IC 3258 , which is approaching us at $517 \mathrm{~km} / \mathrm{sec}$. As the cluster is receding from us at about $1,100 \mathrm{~km} / \mathrm{sec}$, this galaxy must move with over $1,600 \mathrm{~km} / \mathrm{sec}$ through the Virgo Cluster's central region. Analogously, those galaxies which happen to
 The record is hold by NGC 4388 at $2535 \mathrm{~km} / \mathrm{sec}$, so that this galaxy moves peculiarly in the direction away from us at over $1,400 \mathrm{~km} / \mathrm{sec}$.

Our image shows the central portion of the Virgo Cluster of Galaxies, and is centered on the giant elliptical galaxy M87 which is considered to be the dominant galaxy of the whole giant cluster, situated close to its physical center. The two bright galaxies on the right (west) are (right-to-left) M84 and M86; starting from these two, a chain of galaxies ("Markarian's chain") stretches well to the upper (northern) middle of our image (and beyond, well to $\underline{\text { M } 88}$ which is slightly outside above the sky area photographed our image). The appealing group around these two giant lenticulars is described with M84, and in our collection of images with M84 and M86; we also have images of M87 together with Markarian's chain around M84 and M86. To the left (east) of M87, the considerably bright elliptical (type E0) M89 occurs (on roughly the same declination as M87), above it and slightly more left is the inclined and conspicuous spiral M90, while below (south) and left of M89 there is M58, sitting just on the edge of our image.

- Read a more detailed discussion of our image, identifying some of the fainter NGC galaxies.
- View the Virgo Cluster in X-ray light, or
- Compare the visual and X-ray appearance or an enlargement of the central part around M87.
- View an X-ray/Radio Overlay image of the Virgo Cluster
- Look at our table of Virgo Cluster members, showing some brighter non-Messier members also
- Limber Observatory near San Antonio, Texas, provides a clickable map of the Virgo cluster with links to images of the Messier galaxies.
- Observing the Virgo Cluster of Galaxies - our hints for observers
- Scott D. Davis' sketch of Virgo cluster galaxies around M84, M86, M87 and many fainter galaxies
- Bill Ferris' Virgo Cluster chart and observations page; he also features Markarian's chain
- The Virgo Mainline: Galaxy Hopping "Markarian's Chain", by Steve Gottlieb
- The Virgo Supercluster within 100 million Light Years from An Atlas of the Universe
- Identify galaxies in the heart of the Virgo cluster interactively

As the Virgo Cluster is such an important object in our wider intergalactic neighborhood, its distance from us is of great interest, also for the determination of the cosmic distance scale, and for cosmological issues. Semi-recent HST observations (from the 1990s) of Cepheids in M100, as well as estimates from the globular cluster luminosity in $\underline{\text { M87 }}$, together with the work of Nial R. Tanvir and, again, HST observations, on the M96 group, extrapolated to this cluster, indicate that the Virgo cluster is at a distance of some 60 million light-years. Historically, the Virgo Cluster distance has been subject of controversial discussion since Hubble's earliest (and systematically too small) estimates.

References for further reading:

- Bruno Binggeli, 1999. The Virgo Cluster - Home of M87. in: Proceedings of a workshop held at Ringberg Castle, Tegernsee, Germany, 15-19 September 1997, by Hermann-Josef Röser, Klaus Meisenheimer (eds.), Springer, Berlin \& New York. Available online - framed version

- Virgo cluster optical and x-ray images (White, U. Alabama)

- An ESO Workshop, held in Garching, September 4-7, 1984, was completely devoted to the Virgo Cluster of Galaxies. See ESO Conference and Workshop Proceedings No 20, 1985, edited by O.-G. Richter and B. Binggeli.

Hartmut Frommert
 Christine Kronberg
 [contact]

Besides being a considerably successful comet hunter and deep-sky discoverer, Charles Messier was also a skilled carthographer of the heavens. This was of particular importance for him, because for every comet discovery, he published a map of the comet's trajectory in the Memoirs of the French Academy of Sciences. These maps, importance for him, because for every comet discovery, he published a map of the comet's t
although not intended to be so, were also some of the most up-to-date star charts available.

Our map presents the path of the comet of 1779 from the constellation Hercules thru Corona and Bootes to Coma Berenices and Virgo.
If we look carefully at the detail of the region around Coma at the right, we see a number of nebulous objects with labels like "nebula 1777" or "nebula 1780." These are some of the nebulae that Messier was publishing almost simultaneously in his famous nebula catalog of 1781. There are no less than 28 Messier objects depicted in the full comet map, many of them for the first time.

Messier's chart of the Coma-Virgo Region

The path of the comet in the first week of April, 1779 , is charted at lower left. There are a number of nebulae depicted in Coma, indicated by the letters a,b,c, etc. as wel as several others identified by their year of discovery. There is also a cluster of eleven newly discovered nebulae at lower right, numbered 1 to 11. These are part of the famous Virgo cluster of nebulae.
In this chart, the following Messier objects can be identified:

- M49 = "Nebul. 1771",
- M58-M60 $=$ " 3 Nebul. 1779" (r-to-1),
- M61 $=$ "Neb. 1779",
- $\underline{\text { M } 84--M 91 ~ a n d ~ M 98--M 100 ~}=$ "Onze Neb. Observees en 1781 ", labeled with numbers as follows:
- M84 $=5$,
- $\underline{M} 85=4$,
- M86 $=6$,
- $\overline{M 87}=7$,
- $\mathrm{M} 88=8$,
- M89 $=9$,

M90 $=10$
M91 (wrong position) $=11$,

- $\underline{M} 98=1$,
- $\mathrm{M} 99=2$,
- $\underline{\mathrm{M} 100}=3$

For his star charts, Messier used the plates in the Fortin edition of John Flamsteed's Atlas celeste of 1776.
From the Out of This World: The Golden Age of the Celestial Atlas Exhibition of Rare Books from the Collection of the Linda Hall Library.

```
Hartmut Frommert
Christine Kronberg
[contact
```

Exscorex

Messier Objects in the Virgo Cluster

In this chart of the Virgo Cluster region by Charles Messier, he has marked the positions of all 16 Messier Objects in this region:

- Near the bottom and in the right half, "Neb. 1779" is M61
- Below the image's center, "Nebul. 1771" is M49
- Left of the image's center, "3 Nebul. 1779" are, from left to right: M60, M59, and M58.
- The "Onze Neb. Observees en 1781" (Eleven Nebulae Observed in 1781) are M84--M91 and M98--M100:
- $\underline{M 98}=1$,
- $\underline{M 99}=2$,
- $\underline{M 100}=3$,
- $\underline{M 85}=4$,
- $\underline{M 84}=5$,
- $\underline{M 86}=6$,
- $\underline{M 87}=7$,
- $\underline{\mathrm{M} 88}=8$,
- $\underline{M 89}=9$,
- $\underline{\mathrm{M} 90}=10$,
- $\underline{\text { M91 }}($ wrong position $)=11$,

Hartmut Frommert
Christine Kronberg
[contact]

M 91

Spiral Galaxy M91 (NGC 4548), type SBb, in Coma Berenices

Right Ascension	$12: 35.4(\mathrm{~h}: \mathrm{m})$
Declination	$+14: 30(\mathrm{deg}: \mathrm{m})$
Distance	$60000(\mathrm{kly})$
Visual Brightness	$10.2(\mathrm{mag})$
Apparent Dimension	$5.4 \times 4.4(\operatorname{arc} \mathrm{~min})$

Discovered most probably by Charles Messier in 1781. Independently rediscovered by William Herschel in the on April 8, 1784.

On March 18, 1781, Charles Messier discovered the unusually large number of 8 nebulous objects, all in the region of today's border of the constellations Virgo and Coma Berenices, i.e. Virgo Cluster galaxies (plus one additional object, globular cluster M92 in Hercules). The last of these eight objects was cataloged by him as M91, but his position was erroneous.

Thus, for a long time, M91 was a missing Messier object, as Messier had determined its position from M89 while he thought it was from M58, as the Texas amateur William C. Williams of Fort Worth has figured out in 1969 (Williams 1969). Thus, the identity of M91 with NGC 4548, which had been cataloged H II. 120 by William Herschel on April 8, 1784, was finally uncovered. Previous opinions have been that M91 had either been a comet which the great comet hunter Messier mistook for a nebula, and Owen Gingerich had suspected that it had been a duplicate observation of M58. William Herschel had not found M91 at Messier's erroneous position and suspected that it might have been NGC 4571 (his H III.602), a beautiful but faint 11.3 mag barred spiral (NGC 4571 came into discussion in summer 1994 when a group of astronomers at the Canada France Hawaii Telescope (CFHT) used observations of 3 Cepheids in this galaxy for a determination of the Hubble constant).

The barred spiral galaxy M91 is an appealing member of the Virgo Cluster of Galaxies. It is of type SBb and its bar is very conspicuous, lying at position angle $65 / 245$ degrees (as measured from the North direction to the East). As its recession velocity is only about $400 \mathrm{~km} / \mathrm{sec}$, it has a considerable peculiar velocity toward us through the Virgo cluster, about $700 \mathrm{~km} / \mathrm{sec}$, as the cluster's recession velocity is about $1100 \mathrm{~km} / \mathrm{sec}$.

The membership of Messier 91 in the Virgo Cluster of Galaxies was confirmed by a recent measurement of its distance as $52+/-6$ million light years by detecting Cepheid variables. These measurements were done by the Hubble Space Telescope H0 Key Project Team (paper XX, 1997). This coincides well with the value for other Virgo galaxies, including M100. The difference of their to our value is mainly due to another distance of the Large Magellanic Cloud assumed by them - the Hipparcos correction would increase their distance to about 58 Mly .

For the moderately equipped amateur, M91 is one of the most difficult Messier objects. Suggestions of this bar may be seen at medium power even in smaller telescopes if the viewing conditions are good enough to see the galaxy at all. Photos show the bar more clearly, and show the spiral arms emanating from the ends of the bar.

Messier had described M91 as "Nebula without stars, fainter than M90". John Herschel described it as bright, large, little elongated, little brighter in the middle in his General Catalogue, while in his earlier observations, he describes its shape once as "pretty much elongated" and twice as "round". This is probably because of different viewing conditions: Under poor conditions, only the bright elongated bar region of this galaxy shows up, while under good conditions the spiral arms show up and exhibit an almost round to slightly elongated shape. This effect can be reproduced to some degree with amateur instruments.

- Historical Observations and Descriptions of M91
- Hubble Space Telescope images of M91
- More images of M91
- Amateur images of M91
- SIMBAD Data of M91
- NED Data of M91
- Publications on M91 (NASA ADS)
- Observing Reports for M91 (IAAC Netastrocatalog)

References

- H0 Key Project materials on M91:
- The HST Key Project Archives - M91
- John A. Graham et.al., 1997. The Hubble Space Telescope Key Project on the Extragalactic Distance Scale. XX. The Discovery of Cepheids in the Virgo Cluster Galaxy NGC 4548. The Astrophysical Journal, Volume 516, Issue 2, p. 626-646.
- William C. Williams, 1969. Letter to the Editor. Sky \& Telescope, Vol. 38, No. 6, December 1969, p. 376. Available online

Hartmut Frommert

Christine Kronberg
[contact]

IOn cometary orbis] Herevith stars tars discoverect by be me.

*) These elements are already printed in the Jahruch 1785 . page 16

$(* *)$ See astronom. Jahrbuch f. 1785. page 164166 and following.
C
$\left({ }^{* * * * *)}\right.$ See astronomisches Sahrbuch for 1785. page 167. and Fig. 1 on the 3 rd table.
$[0 \mathrm{n}$ nebulous objects]
Concening the nebulout

 Bootis and Iota Praconis, but this is a mistake. This n
in the listof my nebuluous sars communicated to him.
[M104] On May 11,1781, Idiscovered a nebula above the Raven [Corvus] which did not appear to me to contain any single star. It of of faint ligh and difficult to find

 and its oorthem dectination about 49. I will be going to deelemmine the more acurate position of this one shortly

 Here follow the elements of the ellipitical orbit t calculated for the new plane:


```
M,
Mistaceer, ineminelion om average time on the paris merid
```

Major half axis
Period of siderial revolution
Prace of the ascending node

Observaions
At the transit on
I noticed the full e enty of Mercury or the first inner contact of the edges $4 \mathrm{t} 5 \mathrm{~h} 2 \mathrm{z}^{8} 8$ " true time.
The second inner contact of the edges on exit was at 4 h $17^{\prime} 46^{\prime \prime}$.

$\%$ Here a t us [in Berin] the whole day was covered air and very fogey.

tes in time are missing.


```
*)
```



```
Othe latiuce of 48d 51'50" and 2" time, west of the meridian of the Royal Observato.
```


\author{

- More on Pierre Méchain
}

```
\frac{Hartmut Frommert }{\mathrm{ Chisin}\mathrm{ Kromberg}}
```


[^0]: Hartmut Frommert
 Christine Kronberg
 [contact]

[^1]: Hartmut Frommert
 Christine Kronberg
 [contact]

[^2]: Nind
 等

[^3]: Hartmut Frommert
 Christine Kronberg
 [contact]

[^4]: Hartmut Frommert
 Christine Kronberg
 [contact]

